以下四個(gè)命題:
①平面內(nèi)與一定點(diǎn)F和一條定直線(xiàn)l的距離相等的點(diǎn)的軌跡是拋物線(xiàn);
②拋物線(xiàn)y=ax2的焦點(diǎn)到原點(diǎn)的距離是
|a|
4
;
③直線(xiàn)l與拋物線(xiàn)y2=2px(p>0)交于兩點(diǎn)A(x1,y1),B(x2,y2),則|AB|=x1+x2+p;
④正三角形的一個(gè)頂點(diǎn)位于坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線(xiàn)y2=2px(p>0)上,則此正三角形的邊長(zhǎng)為4
3
p
.其中正確命題的序號(hào)是
分析:對(duì)于①當(dāng)定點(diǎn)F正好在定直線(xiàn)l上時(shí),平面內(nèi)與一定點(diǎn)F和一條定直線(xiàn)l的距離相等的點(diǎn)的軌跡不是拋物線(xiàn);
②先把拋物線(xiàn)方程整理成標(biāo)準(zhǔn)方程,進(jìn)而根據(jù)拋物線(xiàn)的性質(zhì)可得焦點(diǎn)坐標(biāo).
③只有當(dāng)直線(xiàn)l是過(guò)拋物線(xiàn)焦點(diǎn)的直線(xiàn)時(shí),直線(xiàn)l與拋物線(xiàn)y2=2px(p>0)交于兩點(diǎn)A(x1,y1),B(x2,y2),則|AB|=x1+x2+p才成立;
④設(shè)另外兩個(gè)頂點(diǎn)的坐標(biāo)分別為 (
m2
2p
, m
),(
m2
2p
, -m
),由 tan30°=
m
m2
2p
,解得 m的值.
解答:解:①當(dāng)定點(diǎn)F正好在定直線(xiàn)l上時(shí),平面內(nèi)與一定點(diǎn)F和一條定直線(xiàn)l的距離相等的點(diǎn)的軌跡不是拋物線(xiàn);故錯(cuò);
②當(dāng)a>0時(shí),整理拋物線(xiàn)方程得x2=
1
a
y,p=
1
2a

∴焦點(diǎn)坐標(biāo)為 (0,
1
4a
)
,拋物線(xiàn)y=ax2的焦點(diǎn)到原點(diǎn)的距離是
1
4|a|
;故錯(cuò);
③當(dāng)直線(xiàn)l不是過(guò)拋物線(xiàn)焦點(diǎn)的直線(xiàn)時(shí),直線(xiàn)l與拋物線(xiàn)y2=2px(p>0)交于兩點(diǎn)A(x1,y1),B(x2,y2),則|AB|=x1+x2+p不成立,故③錯(cuò);
④設(shè)正三角形另外兩個(gè)頂點(diǎn)的坐標(biāo)分別為 (
m2
2p
, m
),(
m2
2p
, -m
),由 tan30°=
3
3
=
m
m2
2p
,
解得 m=2
3
p,故這個(gè)正三角形的邊長(zhǎng)為  2m=4
3
p
,
故正三角形的一個(gè)頂點(diǎn)位于坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線(xiàn)y2=2px(p>0)上,則此正三角形的邊長(zhǎng)為4
3
p
正確.
其中正確命題的序號(hào)是 ④.
故答案為:④.
點(diǎn)評(píng):本題考查拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線(xiàn)的定義是解題的關(guān)鍵.④直角三角形中的邊角關(guān)系,設(shè)出另外兩個(gè)頂點(diǎn)的坐標(biāo),是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、如圖所示,在正方體ABCD-A1B1C1D1中,M、N分別是棱AB、CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動(dòng),有以下四個(gè)命題:
①平面MB1P⊥ND1;②平面MB1P⊥平面ND1A1;③△MB1P在底面ABCD上的射影圖形的面積為定值;④△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號(hào)是
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E、F分別是棱AA′,CC′的中點(diǎn),過(guò)直線(xiàn)EF的平面分別與棱BB′、DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x=
12
時(shí),四邊形MENF的面積最;
③四邊形MENF周長(zhǎng)l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號(hào)為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,E,F(xiàn)分別是棱AA',CC'的中點(diǎn),過(guò)直線(xiàn)E,F(xiàn)的平面分別與棱BB'、DD'交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD'B';
②當(dāng)且僅當(dāng)x=
1
2
時(shí),四邊形MENF的面積最。
③四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C'-MENF的體積V=h(x)為常函數(shù);
以上命題中假命題的序號(hào)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:

①如果平面α和平面β有公共點(diǎn),則只有一個(gè)公共點(diǎn);②不在同一條直線(xiàn)上的四點(diǎn),一定可以確定一個(gè)平面;③若一條直線(xiàn)與兩條平行線(xiàn)都相交,則這三條直線(xiàn)共面;④若四條線(xiàn)段按順序首尾相接,則所得的圖形必是平面圖形.其中正確的命題是(    )

A.僅①           B.僅②            C.僅③              D.僅③和④

查看答案和解析>>

同步練習(xí)冊(cè)答案