【題目】已知函數(shù),,,令.

(Ⅰ)研究函數(shù)的單調(diào)性;

(Ⅱ)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(Ⅲ),正實(shí)數(shù)滿足,證明:.

【答案】(1) 的單增區(qū)間為.

(2)2.

(3)見解析.

【解析】分析:(1)先求函數(shù)的定義域,然后求導(dǎo),通過導(dǎo)數(shù)大于0得到增區(qū)間;

(2)不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,應(yīng)先求導(dǎo)數(shù),研究函數(shù)的單調(diào)性,然后求函數(shù)的最值;

(3)聯(lián)系函數(shù)的單調(diào)性,然后證明即可,注意對(duì)函數(shù)的構(gòu)造.

詳解:(1),

,得,又,所以,所以的單增區(qū)間為.

(2)方法一:令,

所以.

當(dāng)時(shí),因?yàn)?/span>,所以.所以上是遞增函數(shù),

又因?yàn)?/span>

所以關(guān)于的不等式不能恒成立.當(dāng)時(shí),

.

,得,所以當(dāng)時(shí),;當(dāng)時(shí),.

因此函數(shù)是增函數(shù),在是減函數(shù).

故函數(shù)的最大值為.令,因?yàn)?/span>,,又因?yàn)?/span>上是減函數(shù),所以當(dāng)時(shí),.所以整數(shù)的最小值為.

方法二:(2)由恒成立,得上恒成立.

問題等價(jià)于上恒成立.令,只要.因?yàn)?/span>

,令,得.設(shè),因?yàn)?/span>,所以上單調(diào)遞減,不妨設(shè)的根為.當(dāng)時(shí),;當(dāng)時(shí),.所以上是增函數(shù);在上是減函數(shù).

所以.因?yàn)?/span>,

所以.此時(shí),.所以,即整數(shù)的最小值為.

(3)當(dāng)時(shí),,,即

從而

,則由得,可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.所以,所以,即成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在育民中學(xué)舉行的電腦知識(shí)競(jìng)賽中,將九年級(jí)兩個(gè)班參賽的學(xué)生成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)求第二小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)求這兩個(gè)班參賽的學(xué)生人數(shù)是多少?

(3)求這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α∈( ,π),sinα=
(1)求sin( +α)的值;
(2)求cos( ﹣2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,且橢圓上一點(diǎn)到點(diǎn)的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè) 為拋物線 上一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=exg(x)=xb,b∈R.

(1)若函數(shù)f (x)的圖象與函數(shù)g(x)的圖象相切,求b的值;

(2)設(shè)T(x)=f (x)+ag(x),a∈R,求函數(shù)T(x)的單調(diào)增區(qū)間;

(3)設(shè)h(x)=|g(x)|·f (x),b1.若存在x1,x2 [0,1],使|h(x1)-h(x2)|1成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓C(ab0),稱圓C1x2y2a2b2為橢圓C伴隨圓.已知橢圓C的離心率為,且經(jīng)過點(diǎn)(0,1)

1)求實(shí)數(shù)ab的值;

2)若過點(diǎn)P(0m)(m0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長(zhǎng)為2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.

(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);

(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃在全國中學(xué)生田徑比賽期間,安排6位志愿者到4個(gè)比賽場(chǎng)地提供服務(wù),要求甲、乙兩個(gè)比賽場(chǎng)地各安排一個(gè)人,剩下兩個(gè)比賽場(chǎng)地各安排兩個(gè)人,其中的小李和小王不在一起,不同的安排方案共有( )

A. 168種 B. 156種 C. 172種 D. 180種

查看答案和解析>>

同步練習(xí)冊(cè)答案