在直角坐標(biāo)平面xOy內(nèi),已知向量
OA
=(1,5),
OB
=(7,1),
OM
=(1,2),P為滿足條件
OP
=t
OM
(t∈R)的動點.當(dāng)
PA
PB
取得最小值時,求:(1)向量
OP
的坐標(biāo);(2)cos∠APB的值.
分析:(1)由題意知
OM
OP
共線
,由向量共線定理可得?λ∈[0,1]使得
OP
=
λOM
=(λ,2λ)
,由向量數(shù)量積的坐標(biāo)表示可得f(λ)=5λ2-20λ+12,λ∈[0,1]結(jié)合二次函數(shù)在區(qū)間[0,1]的單調(diào)性可求函數(shù)的最小值及P的坐標(biāo);
(2)代入向量夾角公式cos ∠APB=
PA
PB
|
PA
|
|PB
|
求值
解答:解:(1)由題意,可設(shè)
OP
=(λ,2λ)
,其中λ∈[0,1],
PA
=(1-λ,5-2λ),
PB
=(7-λ,1-2λ)

設(shè) f(λ)=
PA
PB
,則f(λ)=(1-λ)(7-λ)+(5-2λ)(1-2λ)
=5λ2-20λ+12,λ∈[0,1]
又f(λ)在[0,1]上單調(diào)遞減
∴當(dāng)λ=1時f(λ)取得最小值,此時P點坐標(biāo)為(1,2)
OP
=(1,2)

(2)
PA
=(0,3),
PB
=(6,-1)

cos∠APB=
PA
PB
|
PA
||
PB
|
=
-3
3
37
=-
37
37
點評:本題考查平面向量共線定理,平面向量數(shù)量積的坐標(biāo)表示,二次函數(shù)的單調(diào)性及最值的求解,向量夾角的坐標(biāo)表示.熟練掌握向量的基礎(chǔ)知識并能靈活運用是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面xOy上的一列點A1(1,a1),?A2(2,a2),?…,?An(n,an),?…,簡記為{An}、若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿足bn+1>bn,n=1,2,…,其中
j
為方向與y軸正方向相同的單位向量,則稱{An}為T點列,
(1)判斷A1( 1,  1),?A2( 2,  
1
2
),?A3( 3,  
1
3
),?…,?
An( n, 
1
n
 ),?…
,是否為T點列,并說明理由;
(2)若{An}為T點列,且點A2在點A1的右上方、任取其中連續(xù)三點Ak、Ak+1、Ak+2,判斷△AkAk+1Ak+2的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;
(3)若{An}為T點列,正整數(shù)1≤m<n<p<q滿足m+q=n+p,求證:
AnAq
j
AmAp
j

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面XOY上的一列點A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…簡記為{An},若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿足bn+1>bn,(n=1,2,…,n∈N) (其中
j
是與y軸正方向相同的單位向量),則稱{An}為“和諧點列”.
(1)試判斷:A1(1,1),A2(2,
1
2
)
,A3(3,
1
22
)
An(n,
1
2n-1
)
…是否為“和諧點列”?并說明理由.
(2)若{An}為“和諧點列”,正整數(shù)m,n,p,q滿足:≤m<n<p<q1,且m+q=n+p.求證:aq+am>an+ap

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面xoy上 的一列點A1(1,a1),A2(2,a2),…,An(n,an),…,簡記為{An}.若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿足bn+1>bn(其中
j
是y軸正方向同向的單位向量),則稱{An}為T點列.
(1)判斷A1(1,1),A2(2,
1
2
),A3(3,
1
3
)…,An(n,
1
n
),…
是否為T點列;
(2)若{an}是等差數(shù)列,判斷點列A1(1,a1),A2(2,a2),…,An(n,an),…是否為T點列,并說明理由;
若{an}是等比數(shù)列,判斷點列A1(1,a1),A2(2,a2),…,An(n,an),…是否為T點列,并說明理由;
(3)若{An}為T點列,且點A2在點A1的右上方,任取其中連續(xù)三點AK,AK+1,AK+2,判斷△AKAK+1AK+2的形狀(銳角三角形,直角三角形,鈍角三角形),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)三模)規(guī)定:直線l到點F的距離即為點F到直線l的距離,在直角坐標(biāo)平面xoy中,已知兩定點F1(-1,0)與F2(1,0)位于動直線l:ax+by+c=0的同側(cè),設(shè)集合P={l|點F1與點F2到直線l的距離之和等于2},Q={(x,y)|(x,y)∉l,l∈P}.則由Q中的所有點所組成的圖形的面積是
π
π

查看答案和解析>>

同步練習(xí)冊答案