已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.6,則P(0<ξ<1)=(  )
A、0.4B、0.3
C、0.2D、0.1
考點(diǎn):正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),得到曲線關(guān)于x=1對(duì)稱,根據(jù)曲線的對(duì)稱性得到P(0<ξ<1).
解答: 解:隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),
∴曲線關(guān)于x=1對(duì)稱,
∵P(ξ<2)=0.6,
∴P(0<ξ<1)=0.6-0.5=0.1,
故選:D.
點(diǎn)評(píng):題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查概率的性質(zhì),是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在[-1,1]上的減函數(shù),則不等式f(x)-f(4x+1)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-2x的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x-x3的單調(diào)遞增區(qū)間是(  )
A、[-1,1]
B、[1,+∞)∪(-∞,-1]
C、[1,+∞)及(-∞,-1]
D、[-
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).若雙曲線上存在點(diǎn)P使
sin∠PF1F2
sin∠PF2F1
=
a
c
,則該雙曲線的離心率的取值范圍為(  )
A、(1,
2
B、(1,2)
C、(1,
5
+1
2
D、(1,
2
+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐O-ABCD中,OA=AB,則OA與底面ABCD所成角的正弦值等于( 。
A、
1
2
B、
3
3
C、
2
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0),與拋物線y2=4x的準(zhǔn)線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若△ABC的面積等于1,則a=( 。
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為x-2y=0,則該雙曲線的離心率是( 。
A、
5
B、
2
C、
7
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,又a1=1,a2=2,且滿足Sn+1=kSn+1,
(1)求k的值及an的通項(xiàng)公式;
(2)若Tn=
an
(an+1)(an+1+1)
,求證:T1+T2+…+Tn
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案