【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1x恒成立.

【答案】
(1)解:∵f(x)=alnx+ =alnx+ ,

∴f′(x)= (x>0).

當(dāng)a≤0時(shí),f′(x)<0,f(x)在(0,+∞)上是減函數(shù),f(x)的最小值不為0;

當(dāng)a>0時(shí),f′(x)= =

當(dāng)x∈(0, )時(shí),f′(x)<0;當(dāng)x∈( ,+∞)時(shí),f′(x)>0.

∴f(x)在(0, )上為減函數(shù),在( ,+∞)上為增函數(shù),

= ,

令g(a)= ,則g′(a)= (a>0).

當(dāng)a∈(0,2)時(shí),g′(a)>0;當(dāng)a∈(2,+∞)時(shí),g′(a)<0,

∴g(a)在(0,2)上為增函數(shù),在(2,+∞)上為減函數(shù),則g(a)max=g(2)=0.

∴f(x)的最小值為0,實(shí)數(shù)a的值為2


(2)證明:當(dāng)a=2時(shí),f(x)=2lnx+ ,x>1,

令h(x)=f(x)﹣ +e1x=2lnx+

則h′(x)= = ,

記q(x)=2x2+x﹣2﹣x3e1x,則q′(x)=4x+1+x2(x﹣3)e1x,

∵x>1,0<e1x<1,

∴當(dāng)1<x<3時(shí),q′(x)>4x+1+x2(x﹣3)=x3﹣3x2+4x+1>0,

又∵當(dāng)x≥3時(shí),q′(x)=4x+1+x2(x﹣3)e1x>0,

∴當(dāng)x>1時(shí),q′(x)=4x+1+x2(x﹣3)e1x>0恒成立,

∴q(x)在(1,+∞)上單調(diào)遞增,q(x)>q(1)=2+1﹣2﹣1=0,

∴h′(x)>0恒成立,h(x)在(1,+∞)上單調(diào)遞增,

∴h(x)>h(1)=0+1﹣1﹣1+1=0,即當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1x恒成立.


【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),對(duì)a分類分析,可知當(dāng)a≤0時(shí),f′(x)<0,f(x)在(0,+∞)上是減函數(shù),f(x)的最小值不為0;當(dāng)a>0時(shí),求出導(dǎo)函數(shù)的零點(diǎn),可得原函數(shù)的單調(diào)性,求其最小值,由最小值為0進(jìn)一步利用導(dǎo)數(shù)求得a值;(2)通過(guò)構(gòu)造函數(shù)h(x)=2lnx+ ,問(wèn)題轉(zhuǎn)化為證明h′(x)>0恒成立,進(jìn)而再次構(gòu)造函數(shù),二次求導(dǎo),整理即得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從6名男生和4名女生中任選4人參加比賽,設(shè)被選中女生的人數(shù)為隨機(jī)變量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)E在PD上,且PE:ED=2:1.

(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大;
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*都有a13+a23+a33+…+an3=Sn2 , 其中Sn為數(shù)列{an}的前n和.
(1)求證:an2=2Sn﹣an;
(2)求數(shù)列{an}的通項(xiàng)公式
(3)設(shè)bn=3n+(﹣1)n﹣1λ2 (λ為非零整數(shù),n∈N*)試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖像對(duì)應(yīng)的函數(shù)(

A. 在區(qū)間上單調(diào)遞減 B. 在區(qū)間上單調(diào)遞增

C. 在區(qū)間上單調(diào)遞減 D. 在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, ADBC交于點(diǎn)M,設(shè),以、為基底表示

【答案】

【解析】試題分析:由A、M、D三點(diǎn)共線,知;由C、M、B三點(diǎn)共線,知

,所以,所以=

試題解析:

設(shè),

因?yàn)?/span>A、M、D三點(diǎn)共線,所以,即

因?yàn)?/span>C、M、B三點(diǎn)共線,所以,即

解得,所以

型】解答
結(jié)束】
20

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,a∈R.
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)0<a< 時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)當(dāng)a=﹣1時(shí),關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月10日,CBA半決賽開(kāi)打,采用7局4勝制(若某對(duì)取勝四場(chǎng),則終止本次比賽,并獲得進(jìn)入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭(zhēng)奪一個(gè)決賽名額,由于新疆隊(duì)常規(guī)賽占優(yōu),決賽時(shí)擁有主場(chǎng)優(yōu)勢(shì)(新疆先兩個(gè)主場(chǎng),然后三個(gè)客場(chǎng),再兩個(gè)主場(chǎng)),以下是總決賽賽程:

日期

比賽隊(duì)

主場(chǎng)

客場(chǎng)

比賽時(shí)間

比賽地點(diǎn)

17年3月10日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月12日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月15日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月17日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月19日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月22日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月24日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊


(1)若考慮主場(chǎng)優(yōu)勢(shì),每個(gè)隊(duì)主場(chǎng)獲勝的概率均為 ,客場(chǎng)取勝的概率均為 ,求遼寧隊(duì)以比分4:1獲勝的概率;
(2)根據(jù)以往資料統(tǒng)計(jì),每場(chǎng)比賽組織者可獲得門票收入50萬(wàn)元(與主客場(chǎng)無(wú)關(guān)),若不考慮主客場(chǎng)因素,每個(gè)隊(duì)每場(chǎng)比賽獲勝的概率均為 ,設(shè)本次半決賽中(只考慮這兩支隊(duì))組織者所獲得的門票收入為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①若 , 是第一象限角且 ,則 ;

②函數(shù)上是減函數(shù);

是函數(shù) 的一條對(duì)稱軸;

④函數(shù) 的圖象關(guān)于點(diǎn) 成中心對(duì)稱;

⑤設(shè) ,則函數(shù) 的最小值是,其中正確命題的序號(hào)為 __________

查看答案和解析>>

同步練習(xí)冊(cè)答案