11.對任意的實數(shù)k,直線y=kx+$\sqrt{3}$與圓x2+y2=4的位置關系一定是( 。
A.相離B.相交但直線過圓心
C.相切D.相交但直線不過圓心

分析 直線y=kx+$\sqrt{3}$過定點(0,$\sqrt{3}$),即可判斷點與圓的位置關系.

解答 解:直線y=kx+2過定點A(0,$\sqrt{3}$),
∵AO=3<4,
∴點A在圓內,
即直線和圓相交,
∵(0,0)不在直線上,
∴直線不過圓心,
故選:D.

點評 本題主要考查直線和圓的位置關系的判斷,根據(jù)直線過定點,判斷點和圓的位置關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點. 已知∠BAC=$\frac{π}{2}$,AB=2,AC=2,PA=2.求:
(1)三棱錐P-ABC的體積;
(2)異面直線BC與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合M={x|1<x<5},N={0,2,3,5},則M∩N=( 。
A.{x|2<x<4}B.{0,2,3}C.{2,3}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-2x+1在區(qū)間(-1,1)上只有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2+1.
(1)當a=-1時,求函數(shù)f(x)的極值;
(2)當a>0時,證明:存在正實數(shù)λ,使得|${\frac{1-x}{f(x)-lnx}}$|≤λ恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
(1)求函數(shù)f(x)的單調減區(qū)間;
(2)若x∈[0,$\frac{π}{4}$],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.下列命題中,真命題是①③④
①若${\overrightarrow{a}}$2+${\overrightarrow}$2=0,則$\overrightarrow{a}$=$\overrightarrow$=$\overrightarrow{0}$;                  
②若向量$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$;
③|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|;                     
④($\overrightarrow{a}$+$\overrightarrow$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow+\overrightarrow{c}$);
⑤若向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;     
⑥$\overrightarrow{a}$⊥$\overrightarrow$?|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知復數(shù)z滿足(1-i)z=4i,則|z|=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,已知PA⊥平面ABC,BC⊥AC,則圖中直角三角形的個數(shù)為4.

查看答案和解析>>

同步練習冊答案