19.定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項(xiàng),其中m項(xiàng)為0,m項(xiàng)為1,且對(duì)任意k≤2m,a1,a2…ak中0的個(gè)數(shù)不少于1的個(gè)數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有14個(gè).

分析 由新定義可得,“規(guī)范01數(shù)列”有偶數(shù)項(xiàng)2m項(xiàng),且所含0與1的個(gè)數(shù)相等,首項(xiàng)為0,末項(xiàng)為1,當(dāng)m=4時(shí),數(shù)列中有四個(gè)0和四個(gè)1,然后一一列舉得答案.

解答 解:由題意可知,“規(guī)范01數(shù)列”有偶數(shù)項(xiàng)2m項(xiàng),且所含0與1的個(gè)數(shù)相等,首項(xiàng)為0,末項(xiàng)為1,若m=4,說(shuō)明數(shù)列有8項(xiàng),滿(mǎn)足條件的數(shù)列有:
0,0,0,0,1,1,1,1;   0,0,0,1,0,1,1,1;   0,0,0,1,1,0,1,1;   0,0,0,1,1,1,0,1;   0,0,1,0,0,1,1,1;
0,0,1,0,1,0,1,1;   0,0,1,0,1,1,0,1;   0,0,1,1,0,1,0,1;   0,0,1,1,0,0,1,1;   0,1,0,0,0,1,1,1;
0,1,0,0,1,0,1,1;   0,1,0,0,1,1,0,1;   0,1,0,1,0,0,1,1;   0,1,0,1,0,1,0,1.共14個(gè).
故答案為14

點(diǎn)評(píng) 本題是新定義題,考查數(shù)列的應(yīng)用,關(guān)鍵是對(duì)題意的理解,枚舉時(shí)做到不重不漏,是壓軸題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓C:(x-1)2+(y-1)2=4及直線(xiàn)l:x-y+2=0,則直線(xiàn)l被圓C截得的弦長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)=x2+bx-1(b∈R).
(Ⅰ)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
(Ⅱ)若函數(shù)y=|f(x)|-2有四個(gè)零點(diǎn),求b的取值范圍;
(Ⅲ)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知拋物線(xiàn)C:y2=6x的焦點(diǎn)為F,P為拋物線(xiàn)C上任意一點(diǎn),若M(3,$\frac{1}{2}$),則|PM|+|PF|的最小值是( 。
A.$\frac{11}{2}$B.6C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.橢圓與雙曲線(xiàn)有相同的焦點(diǎn)F1(-c,0),F(xiàn)2(c,0),橢圓的一個(gè)短軸端點(diǎn)為B,直線(xiàn)F1B與雙曲線(xiàn)的一條漸近線(xiàn)平行,若橢圓與雙曲線(xiàn)的離心率分別為e1,e2,則3e12+e22的最小值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知正方體ABCD-A1B1C1D1棱長(zhǎng)為1,點(diǎn)P在線(xiàn)段BD1上,且BP=$\frac{1}{3}$BD1,則三棱錐P-ABC的體積為( 。
A.$\frac{1}{9}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a=20.01,b=ln$\frac{7}{3}$,c=log3$\frac{11}{12}$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≤2015}\\{f(x-5),x>2015}\end{array}\right.$,則f(2019)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=x2-4x+3,若f(x)≥mx對(duì)任意的實(shí)數(shù)x≥2都成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-2$\sqrt{3}$-4,-2$\sqrt{3}$+4]B.(-∞,-2$\sqrt{3}$-4]∪[-2$\sqrt{3}$+4,+∞)
C.[-2$\sqrt{3}$+4,+∞)D.(-∞,-$\frac{1}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案