12.${({{x^2}-\frac{2}{{\sqrt{x}}}})^{10}}$的展開式中x5的系數(shù)是13440.

分析 由已知二項(xiàng)式寫出二項(xiàng)展開式的通項(xiàng),由x的指數(shù)等于5求得r值,則答案可求.

解答 解:由${T}_{r+1}={C}_{10}^{r}({x}^{2})^{10-r}•(-\frac{2}{\sqrt{x}})^{r}$=$(-2)^{r}{C}_{10}^{r}{x}^{20-\frac{5}{2}r}$.
令$20-\frac{5}{2}r=5$,得r=6.
∴x5的系數(shù)是$(-2)^{6}{C}_{10}^{6}=13440$.
故答案為:13440.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知y=f(x)+3x2是奇函數(shù),f(2)=3,設(shè)g(x)=f(x)-3x,則g(-2)=( 。
A.-27B.27C.-21D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓的長(zhǎng)半軸為6,焦點(diǎn)在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以橢圓內(nèi)一點(diǎn)M(4,2)為中點(diǎn)的弦所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F,離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為4.則該橢圓的標(biāo)準(zhǔn)方程是$\frac{x^2}{16}+\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A,B為兩個(gè)定點(diǎn),P為動(dòng)點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知P是雙曲線$\frac{x^2}{64}-\frac{y^2}{36}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),若|PF1|=17,則|PF2|的值為33.
其中真命題的序號(hào)為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,g(x)=b-2f(x),若y=f(x)-g(x)恰有2個(gè)零點(diǎn),則b的取值范圍是(  )
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.實(shí)數(shù)x大于$\sqrt{10}$,用不等式表示為( 。
A.$x<\sqrt{10}$B.$x≤\sqrt{10}$C.$x>\sqrt{10}$D.$x≥\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合M={0,1,2},集合N={y|y=2x,x∈M},則( 。
A.M∩N={0,2}B.M∪N={0,2}C.M⊆ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{({a+1})x+1,x<1}\\{{x^2}-2ax+2,x≥1}\end{array}}$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.-1<a<1B.-1<a≤1C.$-1<a<\frac{1}{3}$D.$-1<a≤\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案