(2013•普陀區(qū)二模)若(2x+1)5=a0+a1x+a2x2+…+a5x5,則(a0+a2+a4)2-(a1+a3+a5)2=
-243
-243
分析:給x賦值1,-1,要求的式子用平方差公式分解,把賦值后的結(jié)果代入求出最后結(jié)果.
解答:解:因?yàn)?span id="j1pacix" class="MathJye">(2x+1)5=a0+a1x+a2x2+…+a5x5,
令x=1得到35=a0+a1+a2+a3+a4+a5,
令x=-1得到-1=a0-a1+a2-a3+a4-a5,
又(a0+a2+a42-(a1+a3+a52=-(a0+a1+a2+a3+a4+a5)(a0-a1+a2-a3+a4-a5)=-35=-243.
故答案為:-243
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,本題解題的關(guān)鍵是理解賦值法的應(yīng)用,觀察要求的式子的結(jié)構(gòu)特點(diǎn),本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)函數(shù)y=
log2(x-1)
的定義域?yàn)?!--BA-->
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)若函數(shù)f(x)=x2+ax+1是偶函數(shù),則函數(shù)y=
f(x)|x|
的最小值為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�