考察下列一組不等式:,將上述不等式在左右兩端視為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為   
【答案】分析:本題考查的知識點是歸納推理,我要根據(jù)已知的一組不等式:,分析出不等號兩邊數(shù)據(jù)的變化規(guī)律,并進行歸納,進而歸納出一個一般性的式子.
解答:解:由不等式:
我們分析不等號兩端式子結(jié)構(gòu)的特點,及指數(shù)之間的關(guān)系
不難推斷:
am+n+bm+n>ambn+anbm(a,b,m,n>0,且a≠b)
故選Am+n+bm+n>ambn+anbm(a,b,m,n>0,且a≠b)
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

考察下列一組不等式:
23+5322×5+2×52
24+5423×5+2×53
2
5
2
+5
5
2
22×5
1
2
+2
1
2
×52
,將上述不等式在左右兩端視為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考察下列一組不等式:
精英家教網(wǎng)
將上述不等式在左右兩端仍為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考察下列一組不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….將上述不等式在左右兩端仍為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式可以是
2n+5n>2n-k5k+2k5n-k,n≥3,1≤k≤n
2n+5n>2n-k5k+2k5n-k,n≥3,1≤k≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考察下列一組不等式:將上述不等式在左右兩端仍為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為   ___。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(3)(解析版) 題型:解答題

考察下列一組不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….將上述不等式在左右兩端仍為兩項和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式可以是   

查看答案和解析>>

同步練習(xí)冊答案