15.已知函數(shù)y=f(x)存在反函數(shù)y=f-1(x),若函數(shù)$y=f(x)+\frac{1}{x}$的圖象經(jīng)過點(diǎn)(1,2),則函數(shù)$y={f^{-1}}(x)-\frac{1}{x}$的圖象經(jīng)過點(diǎn)(1,0).

分析 利用互為反函數(shù)的性質(zhì)即可得出.

解答 解:∵函數(shù)$y=f(x)+\frac{1}{x}$的圖象經(jīng)過點(diǎn)(1,2),
∴2=f(1)+1,解得f(1)=1.
∴f-1(1)=1.
則函數(shù)$y={f^{-1}}(x)-\frac{1}{x}$的圖象經(jīng)過點(diǎn)(1,0).
故答案為:(1,0).

點(diǎn)評(píng) 本題考查了反函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.A,B,C,D四點(diǎn)都在一個(gè)球面上,AB=AC=AD=$\sqrt{2}$,且AB,AC,AD兩兩垂直,則該球的表面積為( 。
A.B.$\sqrt{6}π$C.12πD.$2\sqrt{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax2+bx+c,x∈[-2a-5,1]是偶函數(shù),則a+b=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a$=(1,0),$\overrightarrow b$=(1,1),若$\overrightarrow a$+λ$\overrightarrow b$與$\overrightarrow a$垂直,則λ=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\overrightarrow a=(x,4,3),\overrightarrow b=(3,2,z)$,若$\overrightarrow a$∥$\overrightarrow b$,則x•z=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知冪函數(shù)$y=({{m^2}-m-1}){x^{{m^2}-2m-\frac{1}{3}}}$,當(dāng)x∈(0,+∞)時(shí)為減函數(shù),則該冪函數(shù)的解析式是${x}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則滿足條件f(m)<f(3)的實(shí)數(shù)m的范圍是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)f(x)=xα,$α∈\left\{{-2,-\frac{1}{2},-\frac{1}{3},\frac{1}{2},2,3}\right\}$的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x∈(0,+∞)時(shí)單調(diào)遞增,則α=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{x}{log_3}(\sqrt{{x^2}-3x+2}+\sqrt{-{x^2}-3x+4})$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-4)∪[2,+∞)B.(-4,0)∪(0,1)C.(-4,0)∪(0,1)D.[-4,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊答案