【題目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1時(shí)有極值0,求常數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=x3-6x+5,x∈R. 若關(guān)于x的方程g(x)=m有三個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍.
【答案】(1)a=2,b=9;(2)5-4<a<5+4.
【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在時(shí)有極值0,則,兩式聯(lián)立可求常數(shù)a,b的值;
(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,根據(jù)函數(shù)圖象的大致形狀可求出參數(shù)a的取值范圍.
(1)由可得,
因?yàn)?/span>在時(shí)有極值0,
所以,
即,解得或,
當(dāng)時(shí),,
函數(shù)在R上單調(diào)遞增,不滿足在時(shí)有極值,故舍去.
所以常數(shù)a,b的值分別為.
(2),
令,解得,
當(dāng)或時(shí),當(dāng)時(shí),,
的遞增區(qū)間是和,單調(diào)遞減區(qū)間為,
當(dāng)有極大值,
當(dāng)有極小值,
由上分析可知y= f(x)圖象的大致形狀及走向,
當(dāng)時(shí),直線與函數(shù)的圖象有3個(gè)不同交點(diǎn),
即方程g(x)=m有三個(gè)不同的實(shí)根
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在抗擊新冠肺炎疫情期間,很多人積極參與了疫情防控的志愿者活動(dòng).各社區(qū)志愿者服務(wù)類型有:現(xiàn)場(chǎng)值班值守,社區(qū)消毒,遠(yuǎn)程教育宣傳,心理咨詢(每個(gè)志愿者僅參與一類服務(wù)).參與A,B,C三個(gè)社區(qū)的志愿者服務(wù)情況如下表:
社區(qū) | 社區(qū)服務(wù)總?cè)藬?shù) | 服務(wù)類型 | |||
現(xiàn)場(chǎng)值班值守 | 社區(qū)消毒 | 遠(yuǎn)程教育宣傳 | 心理咨詢 | ||
A | 100 | 30 | 30 | 20 | 20 |
B | 120 | 40 | 35 | 20 | 25 |
C | 150 | 50 | 40 | 30 | 30 |
(1)從上表三個(gè)社區(qū)的志愿者中任取1人,求此人來(lái)自于A社區(qū),并且參與社區(qū)消毒工作的概率;
(2)從上表三個(gè)社區(qū)的志愿者中各任取1人調(diào)查情況,以X表示負(fù)責(zé)現(xiàn)場(chǎng)值班值守的人數(shù),求X的分布列;
(3)已知A社區(qū)心理咨詢滿意率為0.85,B社區(qū)心理咨詢滿意率為0.95,C社區(qū)心理咨詢滿意率為0.9,“,,”分別表示A,B,C社區(qū)的人們對(duì)心理咨詢滿意,“,,”分別表示A,B,C社區(qū)的人們對(duì)心理咨詢不滿意,寫(xiě)出方差,,的大小關(guān)系.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研團(tuán)隊(duì)研發(fā)了一款快速檢測(cè)某種疾病的試劑盒.為了解該試劑盒檢測(cè)的準(zhǔn)確性,質(zhì)檢部門(mén)從某地區(qū)(人數(shù)眾多)隨機(jī)選取了位患者和位非患者,用該試劑盒分別對(duì)他們進(jìn)行檢測(cè),結(jié)果如下:
(1)從該地區(qū)患者中隨機(jī)選取一人,對(duì)其檢測(cè)一次,估計(jì)此患者檢測(cè)結(jié)果為陽(yáng)性的概率;
(2)從該地區(qū)患者中隨機(jī)選取人,各檢測(cè)一次,假設(shè)每位患者的檢測(cè)結(jié)果相互獨(dú)立,以表示檢測(cè)結(jié)果為陽(yáng)性的患者人數(shù),利用(1)中所得概率,求的分布列和數(shù)學(xué)期望;
(3)假設(shè)該地區(qū)有萬(wàn)人,患病率為.從該地區(qū)隨機(jī)選取一人,用該試劑盒對(duì)其檢測(cè)一次.若檢測(cè)結(jié)果為陽(yáng)性,能否判斷此人患該疾病的概率超過(guò)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在矩形中,在邊上,.沿將和折起,使平面和平面都與平面垂直,連接,如圖(2).
(1)證明:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年1月22日,國(guó)新辦發(fā)布消息:新型冠狀病毒來(lái)源于武漢一家海鮮市場(chǎng)非法銷(xiāo)售的野生動(dòng).專家通過(guò)全基因組比對(duì)發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%和40%的序列相似性.這種新型冠狀病毒對(duì)人們的健康生命帶來(lái)了嚴(yán)重威脅因此,某生物疫苗研究所加緊對(duì)新型冠狀病毒疫苗進(jìn)行實(shí)驗(yàn),并將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計(jì) | 50 | 50 | 100 |
現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)能否有99.9%把握認(rèn)為注射此種疫苗對(duì)預(yù)防新型冠狀病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com