已知圓A:(x-1)2+y2=4與x軸負(fù)半軸交于B點,過B的弦BE與y軸正半軸交于D點,且2BD=DE,曲線C是以A,B為焦點且過D點的橢圓.
(1)求橢圓的方程;
(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.
[本小問為附加題,分值5分](3)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.
分析:(1)由B(-1,0),D(0,
3
3
),E(2,
3)
,能求出橢圓方程.
(2)PQ+PD≤(PA+2)+PD=(PA+PD)+2PA+PD=
4
3
3
-PB+PD≤
4
3
3
+DB
=2
3
,由此能求出PQ+PD的最大值.
解答:解:(1)B(-1,0),D(0,
3
3
),E(2,
3)

橢圓方程為
3
4
x2+3y2=1
…7分
(2)PQ+PD≤(PA+2)+PD
=(PA+PD)+2PA+PD=
4
3
3
-PB+PD≤
4
3
3
+DB
=2
3

所以P在DB延長線與橢圓交點處,
Q在PA延長線與圓的交點處,
得到最大值為2+2
3
.    …15分
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+1)2+y2=8,點B(1,0),D為圓上一動點,過BD上一點E作一條直線交AD于點S,且S點滿足
SE
=
1
2
(
SD
+
SB
)
,
SE
BD
=0
,
(1)求點S的軌跡方程;
(2)若直線l的方程為:x=2,過B的直線與點S的軌跡相交于F、G兩點,點P在l上,且PG∥x軸,求證:直線FP經(jīng)過一定點,并求此定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x-1)2+y2=4與x軸負(fù)半軸交于B點,過B的弦BE與y軸正半軸交于D點,且2
BD
=
DE
,曲線C是以A,B為焦點且過D點的橢圓.
(1)求橢圓的方程;
(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知圓A:(x-1)2+y2=4與x軸負(fù)半軸交于B點,過B的弦BE與y軸正半軸交于D點,且,曲線C是以A,B為焦點且過D點的橢圓.
(1)求橢圓的方程;
(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南通市啟東中學(xué)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓A:(x-1)2+y2=4與x軸負(fù)半軸交于B點,過B的弦BE與y軸正半軸交于D點,且,曲線C是以A,B為焦點且過D點的橢圓.
(1)求橢圓的方程;
(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.

查看答案和解析>>

同步練習(xí)冊答案