已知頂點為原點拋物線焦點與橢圓的右焦點重合在第一和第四象限的交點分別為.

1)若△AOB是邊長為的正三角形,求拋物線的方程;

2)若,求橢圓的離心率;

3為橢圓上的任一點,若直線分別與軸交于點,證明:

 

【答案】

1;(2;3)證明過程詳見試題解析.

【解析】

試題分析:1)由△AOB是邊長為的正三角形得到,代入拋物線方程中,可以得到所求拋物線方程為;(2)由可知點的橫坐標是,因此可結(jié)合建立關(guān)于的方程為:,解出3)利用設(shè)而不求的思想,可先設(shè)三點后代入橢圓方程中,由于的方程為,求出,,那么化簡后得到:.

試題解析:1設(shè)橢圓的右焦點為,依題意得拋物線的方程為

∵△是邊長為的正三角形,

∴點A的坐標是,

代入拋物線的方程解得

故所求拋物線的方程為

2)∵, ∴ 點的橫坐標是

代入橢圓方程解得,即點的坐標是

∵ 點在拋物線上,

,

代入上式整理得:

,解得

,故所求橢圓的離心率.

3證明:設(shè),代入橢圓方程得

而直線的方程為

.

中,以代換

.

考點:圓錐曲線;直線與圓錐曲線的位置關(guān)系.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當△OAB的面積等
10
時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學 題型:填空題

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題

(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省高三上學期期末考試數(shù)學理卷 題型:解答題

(本小題滿分12分)

已知以向量v=(1, )為方向向量的直線l過點(0, ),拋物線C(p>0)的頂點關(guān)于直線l的對稱點在該拋物的準線上.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)A、B是拋物線C上兩個動點,過A作平行于x軸的直線m交直線OB于點N,若

 (O為原點,A、B異于原點),試求點N的軌跡方程.

 

查看答案和解析>>

同步練習冊答案