已知雙曲線
(1)求雙曲線C的漸近線方程;
(2)已知點(diǎn)M的坐標(biāo)為(0,1).設(shè)P是雙曲線C上的點(diǎn),Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn).記.求λ的取值范圍;
(3)已知點(diǎn)D,E,M的坐標(biāo)分別為(-2,-1),(2,-1),(0,1),P為雙曲線C上在第一象限內(nèi)的點(diǎn).記l為經(jīng)過(guò)原點(diǎn)與點(diǎn)P的直線,s為△DEM截直線l所得線段的長(zhǎng).試將s表示為直線l的斜率k的函數(shù).
【答案】分析:(1)在雙曲線,把1換成0,就得到它的漸近線方程.
(2)設(shè)P的坐標(biāo)為(x,y),則Q的坐標(biāo)為(-x,-y),先求出,然后運(yùn)用向量數(shù)量積的坐標(biāo)運(yùn)算能夠求出λ的取值范圍.
(3)根據(jù)P為雙曲線C上第一象限內(nèi)的點(diǎn),可知直線l的斜率再由題設(shè)條件根據(jù)k的不同取值范圍試將s表示為直線l的斜率k的函數(shù).
解答:解:(1)在雙曲線,把1換成0,
所求漸近線方程為
(2)設(shè)P的坐標(biāo)為(x,y),則Q的坐標(biāo)為(-x,-y),
=

∴λ的取值范圍是(-∞,-1].
(3)若P為雙曲線C上第一象限內(nèi)的點(diǎn),
則直線l的斜率
由計(jì)算可得,當(dāng)
當(dāng)
∴s表示為直線l的斜率k的函數(shù)是
點(diǎn)評(píng):本題是直線與圓錐曲線的綜合問(wèn)題,解題要熟練掌握雙曲線的性質(zhì)和解題技巧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上海卷文)(本題滿分16分)已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點(diǎn)的坐標(biāo)為.設(shè)是雙曲線上的點(diǎn),是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).

.求的取值范圍;

(3)已知點(diǎn)的坐標(biāo)分別為為雙曲線上在第一象限內(nèi)的點(diǎn).記為經(jīng)過(guò)原點(diǎn)與點(diǎn)的直線,截直線所得線段的長(zhǎng).試將表示為直線的斜率的函數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,

第3小題滿分7分.

已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點(diǎn)的坐標(biāo)為.設(shè)是雙曲線上的點(diǎn),是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).

.求的取值范圍;

(3)已知點(diǎn)的坐標(biāo)分別為為雙曲線上在第一象限內(nèi)的點(diǎn).記為經(jīng)過(guò)原點(diǎn)與點(diǎn)的直線,截直線所得線段的長(zhǎng).試將表示為直線的斜率的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點(diǎn)的坐標(biāo)為.設(shè)是雙曲線上的點(diǎn),是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).

.求的取值范圍;

(3)已知點(diǎn)的坐標(biāo)分別為,為雙曲線上在第一象限內(nèi)的點(diǎn).記為經(jīng)過(guò)原點(diǎn)與點(diǎn)的直線,截直線所得線段的長(zhǎng).試將表示為直線的斜率的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(上海卷文20)已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點(diǎn)的坐標(biāo)為.設(shè)是雙曲線上的點(diǎn),是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).

.求的取值范圍;

(3)已知點(diǎn)的坐標(biāo)分別為,為雙曲線上在第一象限內(nèi)的點(diǎn).記為經(jīng)過(guò)原點(diǎn)與點(diǎn)的直線,截直線所得線段的長(zhǎng).試將表示為直線的斜率的函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案