精英家教網(wǎng)關于函數(shù)f(x)=
-x,1<x≤4
cosx,,-1≤x≤1
的流程圖如下,現(xiàn)輸入?yún)^(qū)間[a,b],則輸出的區(qū)間是
 
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是判斷滿足以下條件的區(qū)間:在該區(qū)間上①f(x)>0②f'(x)≤0
解答:解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是判斷滿足以下條件的區(qū)間:
在該區(qū)間上①f(x)>0②f'(x)≤0
即在該區(qū)間上函數(shù)為減函數(shù)且圖象在x軸步上方,
∵函數(shù)f(x)=
-x,1<x≤4
cosx,,-1≤x≤1

∴當-1≤x≤1時,f(x)>0;
此時若f'(x)=-sinx≤0,則0≤x≤1.
故答案為[0,1]
點評:根據(jù)流程圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)?②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型③解模.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=2sin(3x-
3
4
π)
,有下列命題
①其最小正周期為
2
3
π
;
②其圖象由y=2sin3x向右平移
π
4
個單位而得到;
③其表達式寫成f(x)=2cos(3x+
3
4
π)
;
④在x∈[
π
12
,
5
12
π]
為單調遞增函數(shù);
則其中真命題為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=2x-
12x
(x∈R)
.有下列三個結論:①f(x)的值域為R;②f(x)是R上的增函數(shù);③f(x)的圖象是中心對稱圖形,其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=x+
1
x
的性質,有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為偶函數(shù);
③函數(shù)f(x)的單調遞增區(qū)間為(-∞,-1),(1,+∞).
其中所有正確說法的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關于函數(shù)f(x)=
1+x2
+x-1
1+x2
+x+1
的五個結論:
①函數(shù)f(x)的定義域是R
②函數(shù)f(x)的值域是(-1,1)
③函數(shù)f(x)是奇函數(shù)
④函數(shù)f(x)在R上是單調增函數(shù)
⑤函數(shù)f(x)有極值
其中正確結論的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=cos2x-2
3
sinxcosx
,下列命題:
①若存在x1,x2有x1-x2=π時,f(x1)=f(x2)成立;   
②f(x)在區(qū)間[-
π
6
,
π
3
]
上是單調遞增;    
③函數(shù)f(x)的圖象關于點(
π
12
,0)
成中心對稱圖象;   
④將函數(shù)f(x)的圖象向左平移
12
個單位后將與y=2sin2x的圖象重合.
其中正確的命題序號
①③
①③
(注:把你認為正確的序號都填上)

查看答案和解析>>

同步練習冊答案