一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場(chǎng)調(diào)查后得到如下規(guī)律:若對(duì)產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來(lái)體現(xiàn).
(1)試寫(xiě)出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時(shí)的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?
(1);
(2)至少需4次
解析試題分析:(1)設(shè)電視廣告播放量為每天i次時(shí),該產(chǎn)品的銷售量為si(0≤i≤n,)根據(jù)循環(huán)體可得再用數(shù)列中的累加法求得sn;
(2)“要使該產(chǎn)品每天的銷售量比不做電視廣告時(shí)的銷售量至少增加90%”根據(jù)(1)則有,或通過(guò)驗(yàn)證得到結(jié)果.
試題解析:(1)解:設(shè)電視廣告播放量為每天i次時(shí),該產(chǎn)品的銷售量為
于是當(dāng)時(shí),
5分
所以,該產(chǎn)品每天銷售量S(噸)與電視廣告播放量n(次/天)的函數(shù)關(guān)系式為
7分
(2)由題意,有所以,要使該產(chǎn)品的銷售量比不做電視廣告時(shí)的銷售量增加90%,則每天廣告的播放量至少需4次. 12分
考點(diǎn):1.考查函數(shù)模型的建立和應(yīng)用;2.程序框圖;3.累加法和指數(shù)不等式的解法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù),且的解集是(1,5).
(l)求實(shí)數(shù)a,c的值;
(2)求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
相關(guān)部門(mén)對(duì)跳水運(yùn)動(dòng)員進(jìn)行達(dá)標(biāo)定級(jí)考核,動(dòng)作自選,并規(guī)定完成動(dòng)作成績(jī)?cè)诎朔旨耙陨系亩檫_(dá)標(biāo),成績(jī)?cè)诰欧旨耙陨系亩橐患?jí)運(yùn)動(dòng)員. 已知參加此次考核的共有56名運(yùn)動(dòng)員.
(1)考核結(jié)束后,從參加考核的運(yùn)動(dòng)員中隨機(jī)抽取了8人,發(fā)現(xiàn)這8人中有2人沒(méi)有達(dá)標(biāo),有3人為一級(jí)運(yùn)動(dòng)員,據(jù)此請(qǐng)估計(jì)此次考核的達(dá)標(biāo)率及被定為一級(jí)運(yùn)動(dòng)員的人數(shù);
(2)經(jīng)過(guò)考核,決定從其中的A、B、C、D、E五名一級(jí)運(yùn)動(dòng)員中任選2名參加跳水比賽(這五位運(yùn)動(dòng)員每位被選中的可能性相同). 寫(xiě)出所有可能情況,并求運(yùn)動(dòng)員E被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為實(shí)數(shù),記函數(shù)的最大值為.
(1)設(shè),求的取值范圍,并把表示為的函數(shù);
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)時(shí),車流速度為千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)a的取值范圍;
(2) 是否存在這樣的實(shí)數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
工廠生產(chǎn)某種產(chǎn)品,次品率與日產(chǎn)量(萬(wàn)件)間的關(guān)系(為常數(shù),且),已知每生產(chǎn)一件合格產(chǎn)品盈利元,每出現(xiàn)一件次品虧損元.
(1)將日盈利額(萬(wàn)元)表示為日產(chǎn)量(萬(wàn)件)的函數(shù);
(2)為使日盈利額最大,日產(chǎn)量應(yīng)為多少萬(wàn)件?(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為10萬(wàn)元,每生產(chǎn)1千件該產(chǎn)品需另投入2.7萬(wàn)元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且
(Ⅰ)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該公司在這一產(chǎn)品的產(chǎn)銷過(guò)程中所獲利潤(rùn)最大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com