(2013•揭陽二模)已知函數(shù)f(x)=4|a|x-2a+1.若命題:“?x0∈(0,1),使f(x0)=0”是真命題,則實(shí)數(shù)a的取值范圍為
a>
1
2
a>
1
2
分析:由于f(x)是單調(diào)函數(shù),在(0,1)上存在零點(diǎn),應(yīng)有f(0)f(1)<0,解不等式求出數(shù)a的取值范圍.
解答:解:由:“?x0∈(0,1),使f(x0)=0”是真命題,得:
f(0)•f(1)<0⇒(1-2a)(4|a|-2a+1)<0
?
a≥0
(2a+1)(2a-1)>0
a<0
(6a-1)(2a-1)<0

a>
1
2

故答案為:a>
1
2
點(diǎn)評:本題考查函數(shù)的單調(diào)性、單調(diào)區(qū)間,及函數(shù)存在零點(diǎn)的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)在等差數(shù)列{an}中,首項(xiàng)a1=0,公差d≠0,若am=a1+a2+…+a9,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)如圖所示,C,D是半圓周上的兩個三等分點(diǎn),直徑AB=4,CE⊥AB,垂足為E,BD與CE相交于點(diǎn)F,則BF的長為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)一個棱長為2的正方體沿其棱的中點(diǎn)截去部分后所得幾何體的三視圖如圖示,則該幾何體的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點(diǎn),M、N兩點(diǎn)分別在AF和CE上運(yùn)動,且AM=EN=a(0<a<
2
)
.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中θ∈(0,
π
2
]

(1)當(dāng)θ=45°時(shí),求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當(dāng)θ=900a=
2
2
.時(shí),求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)已知函數(shù)f(x)=
1
x-ln(x+1)
,則y=f(x)的圖象大致為( 。

查看答案和解析>>

同步練習(xí)冊答案