橢圓
的焦點在x軸,且長半軸長a=5,短半軸長b=3.曲線
是由橢圓四個頂點連接得到的四邊形,處于橢圓內(nèi)部.∴
.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓方程為
(
),拋物線方程為
.過拋物線的焦點作
軸的垂線,與拋物線在第一象限的交點為
,拋物線在點
的切線經(jīng)過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)
為橢圓上的動點,由
向
軸作垂線
,垂足為
,且直線
上一點
滿足
,求點
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓的兩焦點為(-2,0)和(2,0),且橢圓過點
,則橢圓方程是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分)已知橢圓
(a>b>0)
(1)當橢圓的離心率
,一條準線方程為x=4 時,求橢圓方程;
(2)設(shè)
是橢圓上一點,在(1)的條件下,求
的最大值及相應(yīng)的P點坐標。
(3)過B(0,-b)作橢圓
(a>b>0)的弦,若弦長的最大值不是2b,求橢圓離心率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
+
=1的兩焦點為F1、F2,點P在橢圓上,且直線PF1、PF2的夾角為
,則△PF1F2的面積為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
的左,右焦點為
,
,(1,
)為橢圓上一點,橢圓的
長半軸長等于焦距,曲線C是以坐標原點為頂點,以
為焦點的拋物線,自
引直線交曲線C于P,Q兩個不同的交點,點P關(guān)于
軸的對稱點記為M,設(shè)
.
(1)求橢圓方程和拋物線方程;
(2)證明:
;
(3)若
求|PQ|的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓上的點到一條準線距離的最小值恰好等于該橢圓半焦距,則此橢圓的離心率是 ▲
查看答案和解析>>