n∈N+,求證:(1+1)·(1+)…(1+)>

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當n∈N*時,an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項是Sn,對于給定常數(shù)m,若
S(m+1)nSmn
的值是一個與n無關的量,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-2(10-3n)x+9n2-61n+100(n∈N*).
(1)設函數(shù)y=f(x)的圖象的頂點的橫坐標構成數(shù)列{an},求證:數(shù)列{an}是等差數(shù)列;
(2)在(1)的條件下,若數(shù)列{cn}滿足cn=1+
1
4n-
25
2
+an
(n∈N*),求數(shù)列{cn}中最大的項和最小的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知函數(shù)f(x)=(0<x<1)的反函數(shù)為f-1(x),設它在點(n,f-1(n))(n∈N*)處

的切線在Y軸上的截距為bn,數(shù)列{an}滿足:a1=2,an+1=f-1(an)(n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)在數(shù)列{}中,僅當n=5時,取最小值,求A的取值范圍;

(3)令函數(shù)g(x)=f-1(x)(1+x)2,數(shù)列{cn}滿足:c1=,cn+1=g(cn)(n∈N*),求證:對于一切

n≥2的正整數(shù),都滿足:1<<2.

(文)已知函數(shù)f(x):(0<x<1)的反函數(shù)為f-1(x),數(shù)列{an}滿足:a1=2,an+1=f-1(an) (n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)設函數(shù)g(x)=f-1(x)(1+x)2在點(n,g(n))(n∈N*)處的切線在Y軸上的截距為bn,求數(shù)列{bn}的通項公式;

(3)在數(shù)列{bn+}中,僅當n=5時,bn+取最大值,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)高三(下)2月寒假調(diào)研數(shù)學試卷(解析版) 題型:解答題

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當n∈N*時,an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項是Sn,對于給定常數(shù)m,若的值是一個與n無關的量,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省揚州市高考數(shù)學三模試卷(解析版) 題型:解答題

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當n∈N*時,an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項是Sn,對于給定常數(shù)m,若的值是一個與n無關的量,求k的值.

查看答案和解析>>

同步練習冊答案