若<<0,已知下列不等式:①a+bab;②|a|>|b|;③ab;④+>2;⑤a2b2其中正確的不等式個數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
∵<<0
∴b<a<0
∴③錯誤
a+b<0
ab>0
∴①正確
∵b<a<0
∴|a|<|b|
a2b2
∴②、⑤錯誤
∵a+b<0
∴(a-b)2= a2+b2-2ab>0
>2ab
>2
+=>2
∴④正確
∴正確的個數(shù)為2個,故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對a,b>0,a≠b,已知下列不等式成立:
①2ab<a2+b2;
②ab2+a2b<a3+b3;
③ab3+a3b<a4+b4
④ab4+a4b<a5+b5;
(Ⅰ)用類比的方法寫出
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
<a6+b6
(Ⅱ)若a,b>0,a≠b,證明:a2b3+a3b2<a5+b5
(Ⅲ)將上述不等式推廣到一般的情形,請寫出你所得結(jié)論的數(shù)學(xué)表達式(不證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個命題:
①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f′(x0)=0,則它在x=x0處有極值;
②若不論m為何值,直線y=mx+1均與曲線
x2
4
+
y2
b2
=1
有公共點,則b≥1;
③若x、y、z∈R+,a=x+
1
y
,b=y+
1
z
,c=z+
1
x
,則a、b、c中至少有一個不小于2;
④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
以上四個命題正確的是
③④
③④
(填入相應(yīng)序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①命題“若am2<bm2(a,b,m∈R),則a<b”;
②“a≥
1
8
”是“對任意的正數(shù)x,2x+
a
x 
≥1
”的充要條件;
③命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x<0”;
④已知p,q為簡單命題,則“p∧q為假命題”是“p∨q為假命題”的充分不必要條件.
其中正確命題的序號是
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)下列4個命題
①命題“若am2<bm2(a,b,m∈R),則a<b”;
②“a≥
1
8
”是“對任意的正數(shù)x,2x+
a
x
≥1”的充要條件;
③命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x<0”;
④已知p,q為簡單命題,則“p∧q為假命題”是“p∨q為假命題”的充分不必要條件;其中正確的命題個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:
(1)若k∈R,且k
b
=
0
,則k=0或
b
=
0

(2)若
a
b
=0,則
a
=
0
b
=
0

(3)若不平行的兩個非零向量
a
,
b
滿足|
a
|=|
b
|,則(
a
+
b
)•(
a
-
b
)=0
(4)若
a
b
平行,則
a
b
=|
a
|•|
b
|
(5)(
a
b
)•
c
=
a
•(
b
c
)=
a
b
c

(6)若
a
≠0,則對任一非零向量
b
,有
a
b
≠0.
其中真命題的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案