7.7人排成一排,甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,則不同的排法有( 。┓N.
A.960種B.840種C.720種D.600種

分析 利用間接法,求出甲、乙兩人必須相鄰,有A66A22=1440種,甲、乙兩人必須相鄰,與丙相鄰,有A55A22A22=480種,即可得出結(jié)論.

解答 解:由題意,甲、乙兩人必須相鄰,有A66A22=1440種,
甲、乙兩人必須相鄰,與丙相鄰,有A55A22A22=480種,
∴甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,不同的排法有1440-480=960種.
故選:A.

點(diǎn)評 本題考查排列知識的運(yùn)用,考查間接法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.經(jīng)過點(diǎn)A(-1,4),且斜率為-1的直線方程是( 。
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC的三邊長分別為x,4,2x,則其面積的最大值為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各圖形中,不可能是某函數(shù)y=f(x)的圖象的是( 。
A.B.C.D.
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若4sinα-3cosα=0,則$\frac{1}{{{{cos}^2}α+2sin2α}}$的值為( 。
A.$\frac{25}{16}$B.1C.$\frac{25}{48}$D.$\frac{25}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A=60°,b=4$\sqrt{3}$,為使此三角形有兩個(gè),則a滿足的條件是(  )
A.$6<a<4\sqrt{3}$B.0<a<6C.$0<a<4\sqrt{3}$D.$a≥4\sqrt{3}$或a=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=$\frac{4}{5}$|PD|.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程
(2)求過點(diǎn)(3,0),且斜率為$\frac{4}{5}$的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對的邊為a,b,c,f($\frac{A}{2}$)=$\frac{1}{2}$,B=$\frac{π}{4}$,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,
求(1)z=x+2y的最大值;
(2)z=x2+y2-10y+25的最小值.

查看答案和解析>>

同步練習(xí)冊答案