在平面直角坐標系中,直線的參數(shù)方程為:(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的平面直角坐標方程;
(Ⅱ)設(shè)直線與曲線交于點,若點的坐標為,求的值.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)直接根據(jù)極坐標方程與直角坐標的轉(zhuǎn)換關(guān)系式結(jié)合三角函數(shù)中的兩角和與差的三角函數(shù)公式即可實現(xiàn)將曲線的參數(shù)方程化為直角坐標方程;(Ⅱ)先將直線的參數(shù)方程與曲線的直角坐標方程聯(lián)立轉(zhuǎn)化為含的一元二次方程,然后根據(jù)參數(shù)方程中的相關(guān)理論直接求的值.
試題解析:(Ⅰ)由,得,
當時,得,
對應直角坐標方程為:.
當,有實數(shù)解,說明曲線過極點,而方程所表示的曲線也過原點.
∴曲線的直角坐標方程為. 3分
(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標方程,得,
即,由于,故可設(shè)是上述方程的兩實根,
則. 5分
∵直線過點,
∴由的幾何意義,可得. 7分
考點:極坐標與參數(shù)方程、韋達定理
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系.曲線C的極坐標方程為,M,N分別為C與x軸,y軸的交點.
(Ⅰ)寫出C的直角坐標方程,并求M,N的極坐標;
(Ⅱ)設(shè)MN的中點為P,求直線OP的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1) 求曲線的直角坐標方程以及曲線的普通方程;
(2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應的參數(shù),射線與曲線交于點,
(1)求曲線,的方程;
(2)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sin θ,ρcos =2.
(1)求C1與C2交點的極坐標;
(2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點.已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(I)將曲線的極坐標方程轉(zhuǎn)化為直角坐標方程;
(Ⅱ)設(shè)直線與軸的交點是為曲線上一動點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com