已知函數(shù)數(shù)學(xué)公式
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

解:(Ⅰ)a=2時(shí),

曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程x+y-1=0
(Ⅱ)
①當(dāng)a<0時(shí),恒成立,函數(shù)f(x)的遞增區(qū)間為(0,+∞)
②當(dāng)a>0時(shí),令f'(x)=0,解得

x( 0,( ,1)
f′(x)-
+
f(x)

所以函數(shù)f(x)的遞增區(qū)間為,遞減區(qū)間為
(Ⅲ)對任意的x∈[1,+∞),使f(x)≥0成立,只需任意的x∈[1,+∞),f(x)min≥0
①當(dāng)a<0時(shí),f(x)在[1,+∞)上是增函數(shù),
所以只需f(1)≥0

所以a<0滿足題意;
②當(dāng)0<a≤1時(shí),,f(x)在[1,+∞)上是增函數(shù),
所以只需f(1)≥0

所以0<a≤1滿足題意;
③當(dāng)a>1時(shí),,f(x)在上是減函數(shù),上是增函數(shù),
所以只需即可

從而a>1不滿足題意;
綜合①②③實(shí)數(shù)a的取值范圍為(-∞,0)∪(0,1].


分析:(I)當(dāng)a=2時(shí),寫出f(x)的表達(dá)式,對f(x)進(jìn)行求導(dǎo),求出x=1處的斜率,再根據(jù)點(diǎn)斜式求出切線的方程;
(II)求出函數(shù)的定義域,令f′(x)大于0求出x的范圍即為函數(shù)的增區(qū)間;令f′(x)小于0求出x的范圍即為函數(shù)的減區(qū)間;
(III)由題意可知,對任意的x∈[1,+∞),使f(x)≥0成立,只需任意的x∈[1,+∞),f(x)min≥0.下面對a進(jìn)行分類討論,從而求出a的取值范圍;
點(diǎn)評:考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)性.恒成立的問題,一般都要求函數(shù)的最值,此題是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(12分)已知函數(shù)

(1)當(dāng)a=1時(shí),證明函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當(dāng)a=1時(shí),證明函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若a>0,且對任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>2|x1-x2|,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年學(xué)廣東省梅州市東山中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0且x∈[0,π]時(shí),函數(shù)f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年重慶市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0且x∈[0,π]時(shí),函數(shù)f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

同步練習(xí)冊答案