分析 (1)把已知函數(shù)求導(dǎo),得到函數(shù)的單調(diào)區(qū)間,并求得函數(shù)的最大值;
(2)①由已知數(shù)列遞推式可得數(shù)列{an-1}是等比數(shù)列,求其通項(xiàng)公式后可得數(shù)列{an}的通項(xiàng)公式,在求出f${\;}_{\frac{2}{{3}^{n}}}$(x)得最大值證得結(jié)論;
②由①可得對(duì)?x>0,都有$\frac{1}{{a}_{n}}≥\frac{1}{1+x}-\frac{1}{(1+x)^{2}}(\frac{2}{{3}^{n}}-x)$,作和后放縮得答案.
解答 (1)解:由函數(shù)f1(x)=$\frac{1}{1+x}$-$\frac{1}{(1+x)^{2}}$(t-x),得${f}_{1}′(x)=\frac{2(t-x)}{(1+x)^{3}}$,
由f1′(x)>0,得0<x<t,由f1′(x)<0,得x>t,
則f1(x)在(0,t)上為增函數(shù),在(t,+∞)上為減函數(shù),
∴${f}_{1}(x)_{max}={f}_{1}(t)=\frac{1}{1+t}$;
(2)①證明:由3an+1=an+2,得${a}_{n+1}-1=\frac{1}{3}({a}_{n}-1)$,又a1-1=$\frac{2}{3}$,
則數(shù)列{an-1}是等比數(shù)列,且${a}_{n}-1=\frac{2}{3}•(\frac{1}{3})^{n-1}=\frac{2}{{3}^{n}}$,
∴${a}_{n}=\frac{2}{{3}^{n}}+1=\frac{2+{3}^{n}}{{3}^{n}}$,
由(1)知,${f}_{\frac{2}{{3}^{n}}}(x)_{max}$=f${\;}_{\frac{2}{{3}^{n}}}$($\frac{2}{{3}^{n}}$)=$\frac{1}{1+\frac{2}{{3}^{n}}}=\frac{{3}^{n}}{{3}^{n}+2}$=$\frac{1}{{a}_{n}}$,
∴對(duì)?x>0,$\frac{1}{{a}_{n}}$≥f${\;}_{\frac{2}{{3}^{n}}}$(x)(n∈N*);
②解:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$>$\frac{{n}^{2}}{n+1}$.
證明:由①知,對(duì)?x>0,都有$\frac{1}{{a}_{n}}≥\frac{1}{1+x}-\frac{1}{(1+x)^{2}}(\frac{2}{{3}^{n}}-x)$,
于是,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥$\sum_{k=1}^{n}[\frac{1}{1+x}-\frac{1}{(1+x)^{2}}(\frac{2}{{3}^{k}}-x)]$=$\frac{n}{1+x}-\frac{1}{(1+x)^{2}}(\frac{2}{3}+\frac{2}{{3}^{2}}+…+\frac{2}{{3}^{n}}-nx)$,
特別地,令$1-\frac{1}{{3}^{n}}-n{x}_{0}=0$,即${x}_{0}=\frac{1}{n}(1-\frac{1}{{3}^{n}})$>0,
有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥$\frac{n}{1+{x}_{0}}$=$\frac{n}{1+\frac{1}{n}(1-\frac{1}{{3}^{n}})}$=$\frac{{n}^{2}}{n+1-\frac{1}{{3}^{n}}}$>$\frac{{n}^{2}}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了數(shù)列的函數(shù)特性,訓(xùn)練了利用放縮法證明數(shù)列不等式,難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)=$\frac{4}{x}$+x是(1,+∞)上的1級(jí)類增函數(shù) | |
B. | 函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級(jí)類增函數(shù) | |
C. | 若函數(shù)f(x)=x2-3x為[0,+∞)上的t級(jí)類增函數(shù),則實(shí)數(shù)t的取值范圍為[1,+∞) | |
D. | 若函數(shù)f(x)=sinx+ax為[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$級(jí)類增函數(shù),則整數(shù)a的最小值為1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | ||
C. | 第一或第二象限角 | D. | 第一、二象限角或終邊在y軸上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com