【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
【答案】(1)或.(2)
【解析】
(1)代入解析式表示出方程并化簡,對二次項(xiàng)系數(shù)分類討論與,即可確定只有一個(gè)元素時(shí)的值;
(2)由對數(shù)函數(shù)性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,由題意代入可得,化簡不等式并分離參數(shù)后構(gòu)造函數(shù),利用函數(shù)的單調(diào)性求出構(gòu)造函數(shù)的最值,即可求得的取值范圍.
(1)關(guān)于的方程,
代入可得,
由對數(shù)運(yùn)算性質(zhì)可得,化簡可得,
當(dāng)時(shí),代入可得,解得,代入經(jīng)檢驗(yàn)可知,
滿足關(guān)于的方程的解集中恰有一個(gè)元素,
當(dāng)時(shí),則,解得,
再代入方程可解得,代入經(jīng)檢驗(yàn)可知,
滿足關(guān)于的方程的解集中恰有一個(gè)元素,
綜上可知,或.
(2)若,對任意,函數(shù)在區(qū)間上單調(diào)遞減,
由題意可知,
化簡可得,即,所以,
令
,
當(dāng)時(shí),,當(dāng)時(shí),
,設(shè),
設(shè),
,
,
所以在是增函數(shù),,
,
則的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , 是的導(dǎo)數(shù),若存在,使得成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 有兩個(gè)不同的零點(diǎn).
(1)求的取值范圍;
(2)設(shè), 是的兩個(gè)零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2a·4x-2x-1.
(1)當(dāng)a=1時(shí),解不等式f(x)>0;
(2)當(dāng)a=,x∈[0,2]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若曲線在處的切線斜率為0,求a的值;
(Ⅱ)若恒成立,求a的取值范圍;
(Ⅲ)求證:當(dāng)時(shí),曲線 (x>0)總在曲線的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高一年級隨機(jī)選取100名學(xué)生,對他們期中考試的數(shù)學(xué)和語文成績進(jìn)行分析,成績?nèi)鐖D所示.
(Ⅰ)從這100名學(xué)生中隨機(jī)選取一人,求該生數(shù)學(xué)和語文成績均低于60分的概率;
(II)從語文成績大于80分的學(xué)生中隨機(jī)選取兩人,記這兩人中數(shù)學(xué)成績高于80分的人數(shù)為,求的分布列和數(shù)學(xué)期望(;
(Ill)試判斷這100名學(xué)生數(shù)學(xué)成績的方差與語文成績的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別是線段, 的中點(diǎn), .
求證: 平面;
求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com