設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若三邊的長(zhǎng)為連續(xù)的三個(gè)正整數(shù),且A>B>C,3b=20acosA,則sinA:sinB:sinC為( )
A.4:3:2
B.5:6:7
C.5:4:3
D.6:5:4
【答案】
分析:由題意可得三邊即 a、a-1、a-2,由余弦定理可得 cosA=
,再由3b=20acosA,可得 cosA=
,從而可得
=
,由此解得a=6,可得三邊長(zhǎng),根據(jù)sinA:sinB:sinC=a:b:c,求得結(jié)果.
解答:解:由于a,b,c 三邊的長(zhǎng)為連續(xù)的三個(gè)正整數(shù),且A>B>C,可設(shè)三邊長(zhǎng)分別為 a、a-1、a-2.
由余弦定理可得 cosA=
=
=
,
又3b=20acosA,可得 cosA=
=
.
故有
=
,解得a=6,故三邊分別為6,5,4.
由正弦定理可得 sinA:sinB:sinC=a:b:c=a:(a-1):( a-2)=6:5:4,
故選D.
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,求出a=6是解題的關(guān)鍵,屬于中檔題.