(08年廣東佛山質(zhì)檢文)如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與、重合一個(gè)點(diǎn).

(Ⅰ)求證:無論點(diǎn)如何運(yùn)動(dòng),平面平面;

(Ⅱ)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比.

 

解析:(I)因?yàn)閭?cè)面是圓柱的的軸截面,是圓柱底面圓周上不與、重合一個(gè)點(diǎn),所以  …………………2分

又圓柱母線^平面, Ì平面,所以^,

,所以^平面

因?yàn)?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090318/20090318152110008.gif' width=27>Ì平面,所以平面平面;…………………………………6分

(II)設(shè)圓柱的底面半徑為,母線長(zhǎng)度為,

當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),三角形的面積為,

三棱柱的體積為,三棱錐的體積為,

四棱錐的體積為,…………………………………………10分

圓柱的體積為,                      ………………………………………………12分

四棱錐與圓柱的體積比為.………………………………………………14分 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)已知拋物線及點(diǎn),直線斜率為且不過點(diǎn),與拋物線交于點(diǎn)、兩點(diǎn).

(Ⅰ)求直線軸上截距的取值范圍;

(Ⅱ)若分別與拋物線交于另一點(diǎn)、,證明:、交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢文)某物流公司購買了一塊長(zhǎng)米,寬米的矩形地塊,規(guī)劃建設(shè)占地如圖中矩形的倉庫,其余地方為道路和停車場(chǎng),要求頂點(diǎn)在地塊對(duì)角線上,、分別在邊、上,假設(shè)長(zhǎng)度為米.

(1)要使倉庫占地的面積不少于144平方米,長(zhǎng)度應(yīng)在什么范圍內(nèi)?

(2)若規(guī)劃建設(shè)的倉庫是高度與長(zhǎng)度相同的長(zhǎng)方體形建筑,問長(zhǎng)度為多少時(shí)倉庫的庫容最大?(墻體及樓板所占空間忽略不計(jì))

 


 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)如圖,在組合體中,是一個(gè)長(zhǎng)方體,是一個(gè)四棱錐.,點(diǎn)

(Ⅰ)證明:;

(Ⅱ)求與平面所成的角的正切值;

(Ⅲ)若,當(dāng)為何值時(shí),


 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)拋物線的準(zhǔn)線的方程為,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線 相切的圓,

(Ⅰ)求定點(diǎn)N的坐標(biāo);

(Ⅱ)是否存在一條直線同時(shí)滿足下列條件:

分別與直線交于A、B兩點(diǎn),且AB中點(diǎn)為

被圓N截得的弦長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)數(shù)列滿足 .

(Ⅰ)求數(shù)列{}的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列{}的前項(xiàng)和為,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案