直線過點(diǎn)且斜率為>,將直線繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)45°得直線,若直線和分別與軸交于,兩點(diǎn).(1)用表示直線的斜率;(2)當(dāng)為何值時(shí),的面積最?并求出面積最小時(shí)直線的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線 在點(diǎn) 處的切線 平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線 , 且 也過切點(diǎn) ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)直線與兩坐標(biāo)軸圍成的三角形的面積為3,分別求滿足下列條件的直線的方程.
(1)過定點(diǎn).
(2)與直線垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知直線的方程為, 求直線的方程, 使得:
(1) 與平行, 且過點(diǎn)(-1,3) ;
(2) 與垂直, 且與兩軸圍成的三角形面積為4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)在點(diǎn)x=1處的切線與直線垂直,且f(-1)=0,求函數(shù)f(x)在區(qū)間[0,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn)、、,邊上的中線所在直線為.
(I)求的方程;
(II)求點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(9分)
已知圓C:內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程;
(3)當(dāng)直線l的傾斜角為45º時(shí),求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求滿足下列條件的直線方程(13分)
(1)直線過原點(diǎn)且與直線的夾角為;
(2)直線過直線與的交點(diǎn),且點(diǎn)到的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3:1;③圓心到直線l:x-2y=0的距離為,求圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com