已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且,則C的離心率為   
【答案】分析:由橢圓的性質(zhì)求出|BF|的值,利用已知的向量間的關(guān)系、三角形相似求出D的橫坐標(biāo),再由橢圓的第二定義求出|FD|的值,又由|BF|=2|FD|建立關(guān)于a、c的方程,解方程求出 的值.
解答:解:如圖,,
作DD1⊥y軸于點(diǎn)D1,則由,得,所以,,
,由橢圓的第二定義得
又由|BF|=2|FD|,得,a2=3c2,解得e==,
故答案為:
點(diǎn)評(píng):本小題主要考查橢圓的方程與幾何性質(zhì)、第二定義、平面向量知識(shí),考查了數(shù)形結(jié)合思想、方程思想,本題凸顯解析幾何的特點(diǎn):“數(shù)研究形,形助數(shù)”,利用幾何性質(zhì)可尋求到簡(jiǎn)化問(wèn)題的捷徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且
BF
=2
FD
,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城一中(東校區(qū))高三一輪復(fù)習(xí)綜合檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且,則C的離心率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三九月調(diào)研考試文科數(shù)學(xué)卷 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且=2,則C的離心率為       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(全國(guó)Ⅰ)文科數(shù)學(xué)全解全析 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D, 且,則C的離心率為               .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案