9.如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,A1B1=B1C1=1.
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的正弦值.

分析 (1)以B1為原點(diǎn),分別以$\overrightarrow{{B_1}{C_1}},\overrightarrow{{B_1}{A_1}},\overrightarrow{{B_1}B}$的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),證明$\overrightarrow{OC}=\frac{1}{2}\overrightarrow{{A_1}{B_1}}+\overrightarrow{{B_1}{C_1}}$,然后證明OC∥平面A1B1C1
(2)結(jié)合(1)中的空間直角坐標(biāo)系,求出平面ABC的一個(gè)法向量,平面ACA1的一個(gè)法向量,利用空間向量的數(shù)量積求解二面角B-AC-A1的正弦值,即可.

解答 (本題滿分10分)
(1)證明:如圖,以B1為原點(diǎn),分別以$\overrightarrow{{B_1}{C_1}},\overrightarrow{{B_1}{A_1}},\overrightarrow{{B_1}B}$的方向?yàn)閤軸,y軸,z軸的正方向建立空間直角坐標(biāo)系.…(1分)
依題意,${A_1}({0,1,0}),{B_1}({0,0,0}),{C_1}({1,0,0}),O({0,\frac{1}{2},3}),C({1,0,3})$,
因?yàn)?\overrightarrow{OC}=({1,-\frac{1}{2},0}),\overrightarrow{{A_1}{B_1}}=({0,-1,0}),\overrightarrow{{B_1}{C_1}}=({1,0,0})$,…(3分)
所以$\frac{1}{2}\overrightarrow{{A_1}{B_1}}+\overrightarrow{{B_1}{C_1}}=({0,-\frac{1}{2},0})+({1,0,0})=({1,-\frac{1}{2},0})$,
所以$\overrightarrow{OC}=\frac{1}{2}\overrightarrow{{A_1}{B_1}}+\overrightarrow{{B_1}{C_1}}$,
又OC?平面A1B1C1,所以O(shè)C∥平面A1B1C1.…(4分)
(2)解:依題意,結(jié)合(1)中的空間直角坐標(biāo)系,得A(0,1,4),B(0,0,2),C(1,0,3),A1(0,1,0),
則$\overrightarrow{AB}=({0,-1,-2}),\overrightarrow{BC}=({1,0,1}),\overrightarrow{AC}=({1,-1,-1}),\overrightarrow{{A_1}A}=({0,0,4})$,…(5分)
設(shè)$\overrightarrow{n_1}=({{x_1},{y_1},{z_1}})$為平面ABC的一個(gè)法向量,
由$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{AB}=0\\ \overrightarrow n•\overrightarrow{BC}=0\end{array}\right.$得$\left\{\begin{array}{l}-{y_1}-2{z_2}=0\\{x_1}+{z_1}=0\end{array}\right.$解得$\left\{\begin{array}{l}{y_1}=-2z\\{x_1}=-z\end{array}\right.$
不妨設(shè)z1=1,則x1=-1,y1=-2,
所以$\overrightarrow{n_1}=({-1,-2,1})$.…(7分)
設(shè)$\overrightarrow{n_2}=({{x_2},{y_2},{z_2}})$為平面ACA1的一個(gè)法向量,
由$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{AC}=0\\ \overrightarrow{n_2}•\overrightarrow{{A_1}A}=0\end{array}\right.$得$\left\{\begin{array}{l}{x_2}-{y_2}-{z_2}=0\\{z_2}=0\end{array}\right.$解得$\left\{\begin{array}{l}{x_2}={y_2}\\{z_2}=0\end{array}\right.$
不妨設(shè)y2=1,則x2=1,
所以$\overrightarrow{n_2}=({1,1,0})$.…(9分)
因?yàn)椋?cos<\overrightarrow{n_1}•\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=\frac{-1-2+0}{{\sqrt{6}•\sqrt{2}}}=\frac{{\sqrt{3}}}{2}$,
于是$sin<\overrightarrow{n_1}•\overrightarrow{n_2}>=\frac{1}{2}$,
所以,二面角B-AC-A1的正弦值為$\frac{1}{2}$.…(10分)

點(diǎn)評(píng) 本題考查空間向量的應(yīng)用,二面角的平面角的求法,直線與平面平行的判斷方法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.對(duì)于任意集合X與Y,定義:①X-Y={x|x∈X且x∉Y},②X△Y=(X-Y)∪(Y-X),(X△Y稱為X與Y的對(duì)稱差).已知A={y|y=2x-1,x∈R},B={x|x2-9≤0},則A△B=[-3,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某投資公司準(zhǔn)備在2016年年底將1000萬(wàn)元投資到某“低碳”項(xiàng)目上,據(jù)市場(chǎng)調(diào)研,該項(xiàng)目的年投資回報(bào)率為20%.該投資公司計(jì)劃長(zhǎng)期投資(每一年的利潤(rùn)和本金繼續(xù)用作投資),若市場(chǎng)預(yù)期不變,大約在2020年的年底總資產(chǎn)(利潤(rùn)+本金)可以翻一番.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個(gè)焦點(diǎn),PQ是經(jīng)過F1且垂直于x軸的雙曲線的弦,若∠PF2Q=90°,則雙曲線的離心率為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{2}-1$D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知曲線$y=\frac{1}{x}$.
(1)求滿足斜率為$-\frac{1}{3}$的曲線的切線方程;
(2)求曲線過點(diǎn)P(1,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在平行四邊形ABCD中,$∠BAD=\frac{π}{3}$,AB=2,AD=1,若M、N分別是邊BC、CD上的點(diǎn),且滿足$\frac{BM}{BC}=\frac{NC}{DC}=λ$,其中λ∈[0,1],則$\overrightarrow{AM}•\overrightarrow{AN}$的取值范圍是( 。
A.[0,3]B.[1,4]C.[2,5]D.[1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某單位生產(chǎn)A、B兩種產(chǎn)品,需要資金和場(chǎng)地,生產(chǎn)每噸A種產(chǎn)品和生產(chǎn)每噸B種產(chǎn)品所需資金和場(chǎng)地的數(shù)據(jù)如表所示:
資源
產(chǎn)品
資金(萬(wàn)元)場(chǎng)地(平方米)
A2100
B3550
現(xiàn)有資金12萬(wàn)元,場(chǎng)地400平方米,生產(chǎn)每噸A種產(chǎn)品可獲利潤(rùn)3萬(wàn)元;生產(chǎn)每噸B種產(chǎn)品可獲利潤(rùn)2萬(wàn)元,分別用x,y表示計(jì)劃生產(chǎn)A、B兩種產(chǎn)品的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問A、B兩種產(chǎn)品應(yīng)各生產(chǎn)多少噸,才能產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{7}{8}$,且an+1=$\frac{1}{2}$an+$\frac{1}{3}$,n∈N*
(1)求證:{an-$\frac{2}{3}$}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案