【題目】某省級示范高中高三年級對各科考試的評價(jià)指標(biāo)中,有“難度系數(shù)“和“區(qū)分度“兩個(gè)指標(biāo)中,難度系數(shù),區(qū)分度.

1)某次數(shù)學(xué)考試(滿分為150分),隨機(jī)從實(shí)驗(yàn)班和普通班各抽取三人,實(shí)驗(yàn)班三人的成績分別為147142,137;普通班三人的成績分別為97,102,113.通過樣本估計(jì)本次考試的區(qū)分度(精確0.01).

2)如表表格是該校高三年級6次數(shù)學(xué)考試的統(tǒng)計(jì)數(shù)據(jù):

難度系數(shù)x

0.64

0.71

0.74

0.76

0.77

0.82

區(qū)分度y

0.18

0.23

0.24

0.24

0.22

0.15

①計(jì)算相關(guān)系數(shù)r,|r|<0.75時(shí),認(rèn)為相關(guān)性弱;|r|≥0.75時(shí),認(rèn)為相關(guān)性強(qiáng).通過計(jì)算說明,能否利用線性回歸模型描述yx的關(guān)系(精確到0.01).

ti=|xi0.74|(i=12,…,6),求出y關(guān)于t的線性回歸方程,并預(yù)測x=0.75時(shí)y的值(精確到0.01).

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)r,回歸直線的斜率和截距的最小二乘估計(jì)分別為

【答案】10.25;(2)①理由見解析,不能利用線性回歸模型描述yx的關(guān)系; ② 回歸直線方程,預(yù)測值為0.24

【解析】

1)先求出平均成績,即可求出區(qū)分度;

2)①由題意計(jì)算,求出相關(guān)系數(shù),即可判斷兩變量相關(guān)性強(qiáng)弱;

②計(jì)算回歸系數(shù),寫出線性回歸方程,利用方程計(jì)算t=10時(shí)的值.

1)實(shí)驗(yàn)班三人成績的平均值為,

普通班三人成績的平均值為,

故估計(jì)本次考試的區(qū)分度為0.25,

2)①由題中的表格可知(0.64+0.71+0.74+0.76+0.77+0.82)=0.74,

(0.18+0.23+0.24+0.24+0.22+0.15)=0.21,

r0.13.

因?yàn)閨r|<0.75,所以相關(guān)性弱,故不能利用線性回歸模型描述yx的關(guān)系;

yt的值如下表

t

0.10

0.03

0

0.02

0.03

0.08

區(qū)別度y

0.18

0.23

0.24

0.24

0.22

0.15

因?yàn)?/span>0.86,

所以a0.21+0.860.25,

所以所求回歸直線方程y=﹣0.86t+0.25,

當(dāng)x=0.75時(shí),此時(shí)t=0.01,則y0.24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.若“”為真命題,則“”為真命題

B.命題“”的否定是“

C.命題“若,則”的逆否命題為真命題

D.”是“”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式.孿生素?cái)?shù)猜想是希爾伯特在二十世紀(jì)初提出的23個(gè)數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個(gè)素?cái)?shù),使得是素?cái)?shù),稱素?cái)?shù)對為孿生素?cái)?shù).在不超過15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)當(dāng)時(shí),證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的單調(diào)遞增區(qū)間為( )

A.(0,2)B.[0,1)C.(﹣∞,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的包裝紙可類比如圖所示的平面圖形,其可看作是由正方形和等腰梯形拼成,已知,,在包裝的過程中,沿著將正方形折起,直至,得到多面體,分別為中點(diǎn).

1)證明:平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),若對,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,,.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)為(

都有的否定是使得;

成立的充分條件;

③命題,則方程有實(shí)數(shù)根的否命題;

④冪函數(shù)的圖像可以出現(xiàn)在第四象限.

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案