精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x3+ax2+bx+c.
(1)若函數f(x)在區(qū)間[-1,0]上是單調遞減函數,求a2+b2的最小值;
(2)若函數f(x)的三個零點分別為,求證:a2=2b+3.
【答案】分析:(1)由函數在區(qū)間[-1,0]上是單調遞減,得到導函數小于等于0恒成立即f′(-1)≤0且f′(0)≤0代入得到一個不等式組,可以把而a2+b2可視為平面區(qū)域內的點到原點的距離的平方,則由點到直線的距離公式求出即可得到最小值;
(2)f(1)=0得到a、b、c的關系式,利用關系式化簡f(x),因為函數f(x)的三個零點分別為,所以方程的兩根為,利用根與系數的關系化簡可得證.
解答:解:(1)依題意,f′(x)=3x2+2ax+b≤0,在[-1,0]上恒成立.
只需要即可,也即
,而a2+b2可視為平面區(qū)域
內的點到原點的距離的平方,由點到直線的距離公式d2==
∴a2+b2的最小值為
(2)由f(1)=0,得c=-a-b-1,
∴f(x)=x3+ax2+bx+c=x3+ax2+bx-(a+b+1)=(x-1)[x2+(a+1)x+(a+b+1)]
因為函數f(x)的三個零點分別為,
∴方程x2+(a+1)x+(a+b+1)=0的兩根是,,
+=-(a+1),=a+b+1.
=(a+1)2即1-t+2+1+t=(a+1)2
∴2+2(a+b+1)=(a+1)2
∴a2=2b+3
點評:考查學生利用導數研究函數的單調性的能力,理解函數零點的意義,理解二元一次不等式組與平面區(qū)域的關系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案