【題目】(本小題滿分12分)
某企業(yè)有甲、乙兩個(gè)研發(fā)小組.為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b).其中a,分別表示甲組研發(fā)成功和失。籦,分別表示乙組研發(fā)成功和失。
(I)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分.試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績(jī)的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(II)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率.
【答案】(1)甲平均數(shù),方差;乙平均數(shù),方差;甲組的研發(fā)水平優(yōu)于乙組;(2).
【解析】試題分析:(1)寫出兩組的乘積數(shù)據(jù),由此計(jì)算均值和方差進(jìn)行比較即可;
(2)將基本事件羅列出來(lái),根據(jù)古典概型計(jì)算公式計(jì)算即可.
試題解析:
(1)甲組研發(fā)新產(chǎn)品的成績(jī)?yōu)?/span>1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,
其平均數(shù)為甲==;
方差為s==.
乙組研發(fā)新產(chǎn)品的成績(jī)?yōu)?/span>1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,
其平均數(shù)為乙==;
方差為s==.
因?yàn)?/span>甲>乙,s<s,
所以甲組的研發(fā)水平優(yōu)于乙組.
(2)記E={恰有一組研發(fā)成功}.
在所抽得的15個(gè)結(jié)果中,恰有一組研發(fā)成功的結(jié)果是
(a,),(,b),(a,),(,b),(a,),(a,),(,b)共7個(gè).
因此事件E發(fā)生的頻率為.
用頻率估計(jì)概率,即得所求概率為P(E)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.
(1)確定與的關(guān)系;
(2)若,試討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法點(diǎn)撥:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說(shuō)明理由.(參考下表)
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,(ω>0),其最小正周期為 .
(1)求f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+m=0在區(qū)間 上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的,得到函數(shù)的圖象.已知函數(shù).
(1)若函數(shù)在區(qū)間上的最大值為,求的值;
(2)設(shè)函數(shù),證明:對(duì)任意,都存在,使得在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變),那么所得圖象的解析式為y= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期為π,且f(﹣x)=f(x),則( )
A.f(x)在 單調(diào)遞減
B.f(x)在( , )單調(diào)遞減
C.f(x)在(0, )單調(diào)遞增
D.f(x)在( , )單調(diào)遞增
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com