已知f(x)=asinx+x2(a∈R),f(2)=3,則f(-2)=
 
分析:由f(2)=3求得asin2=-1,再根據(jù)f(-2)=-asin2+4,計算求得結果.
解答:解:由題意可得f(2)=asin2+4=3,∴asin2=-1.
∴f(-2)=-asin2+4=1+4=5,
故答案為:5.
點評:本題主要考查利用函數(shù)的奇偶性求函數(shù)的值,得到asin2=-1,時解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

14、已知f(x)=asinx+btanx+1,滿足f(5)=7,則f(-5)=
-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=asinx+b
3x
+4(a,b為實數(shù)),且f(lglog310)=5,則f(lglg3)的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x+1)與y=f-1(x)-1的圖象關于直線x-y=0對稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;
則真命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x)與y=f-1(x)-1的圖象關于直線x-y+1=0對稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;
⑤若sinx+siny=
1
3
,則siny-cos2x
的最大值為
4
3

則真命題的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②已知|
a
| =|
b
| =2
,
a
b
的夾角為
π
3
,則
b
a
上的投影為1;
③若P=a+
1
a
+2(a>0),q=(
1
2
)
x2-2
(x∈R)
,則p>q;
④已知f(x)=asinx-bcosx在x=
π
6
處取得最大值2,則a=1,b=
3

其中正確命題的序號是
①②
①②
.(把你認為正確的命題的序號都填上)

查看答案和解析>>

同步練習冊答案