已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分別是棱CC′與BB′上的點,且EC=BC=2FB=2.
(1)求證:平面AEF⊥平面AA′C′C;
(2)求截面AEF與底面ABCD所成二面角的大小.
(1)以O(shè)為原點,分別為x,y,z軸建立直角坐標(biāo)系, M(0,0,1)F(,0,1)=(,0,0), MF⊥平面,所以平面AEF⊥平面(2)
解析試題分析:(1)以O(shè)為原點,分別為x,y,z軸建立直角坐標(biāo)系,
由條件知:EC=BC=2,F(xiàn)B=1,OA=1,OB=,
從而坐標(biāo)E(0,1,2),F(xiàn)(,0,1).
(1)連結(jié)AE與交于M,連結(jié)MF,
可得,M(0,0,1),
=(,0,0).
則MF⊥平面yOz,即MF⊥平面,
所以平面AEF⊥平面.
(2)取EC中點G,得平面MFG∥底面ABCD,
所以只要求面AEF與面MFG所成的二面角即可.
,
即,可見是面AEF與面MFG所成二面角的平面角.
在Rt△MGE中,EG=1,MG=1,ME=,顯然,所求二面角為.
考點:面面垂直的判定與二面角求解
點評:本題利用向量求解較簡單,坐標(biāo)原點在底面對角線交點處
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在平行四邊形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一個動點,現(xiàn)將該平行四邊形沿對角線BD折成直二面角A-BD-C,如圖2所示.
(1)若F、G分別是AD、BC的中點,且AB∥平面EFG,求證:CD∥平面EFG;
(2)當(dāng)圖1中AE+EC最小時,求圖2中二面角A-EC-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
如圖,在四棱錐中,底面是矩形,平面,,.以的中點為球心、為直徑的球面切于點.
(1)求證:PD⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正方體ABCD-A1B1C1D1中,E、G分別是BC、C1D1的中點,如圖所示.
(1)求證:BD⊥A1C;
(2)求證:EG∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.試探究點M的位置,使F—AE—M為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.
(1)求證:平面平面;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四棱錐的側(cè)面垂直于底面,,,,在棱上,是的中點,二面角為
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com