已知函數(shù)f(x)=
-x+2,x≤0
log2x,x>0
,則f(f(2))的值為
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的解析式,求解f(2),然后求解f[f(2)]的值.
解答: 解:函數(shù)f(x)=
-x+2,x≤0
log2x,x>0
,
則f(2)=log22=1.
f[f(2)]=f(1)=log21=0.
故答案為:0.
點(diǎn)評:本題考查函數(shù)值的求法,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-2

(Ⅰ)用定義法證明其在(2,+∞)上的單調(diào)性.
(Ⅱ)求f(x)在[4,5]上最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(2,
2
)
在冪函數(shù)f(x)的圖象上,則f(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
1
5
,0≤α≤π,則sin(
π
2
+2α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}為等差數(shù)列,a1+a4+a7=39,a3+a6+a9=27,則S9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=4時,求集合A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:cos3θ+cos3
3
+θ)+cos3
3
-θ)=
3
4
cos3θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某箱裝有30個零件,其中5件次品,現(xiàn)從中任意取出4件,用X表示取到次品的件數(shù),列出X的分布列,并求出:
(1)所取出的4件零件中沒有次品的概率;
(2)所取出的4件零件中恰有2件次品的概率;
(3)所取出的4件零件中至多有2件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
是非零向量,且
a
b
=0,8
a
-k
b
與-k
a
+
b
平行,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案