已知函數(shù)f(x)在[0,+∞)上是增函數(shù),g(x)=-f(|x|),若g(lgx)>g(1),則x的取值范圍是
 
分析:由f(x)在[0,+∞)上是增函數(shù),找出g(x)=-f(|x|)的單調(diào)性,在利用單調(diào)性求出x的取值范圍.
解答:解;因為f(x)在[0,+∞)上是增函數(shù),且|x|≥0,所以g(x)=-f(|x|)在(0,+∞)內(nèi)為減函數(shù),在(-∞,0)上遞增.
∴g(lgx)>g(1)?f(|lgx|)<f(1)?|lgx|<1?
1
10
<x<10,
故答案為 
1
10
<x<10.
點評:本題是對函數(shù)單調(diào)性的考查,如果已知函數(shù)為減函數(shù),則函數(shù)值大對應(yīng)自變量反而小.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知函數(shù)f(x)在R上是減函數(shù),A(0,-2),B(-3,2)是其圖象上的兩點,那么不等式-2<f(x)<2的解集是
{x|-3<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是
y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),則x的取值范圍是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
2
-(1+2a)x+
4a+1
2
ln(2x+1)
,a>0.
(Ⅰ)已知函數(shù)f(x)在x=2取得極小值,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當a>
1
4
時,若存在x0∈(
1
2
,+∞),使得f(x0)<
1
2
-2a2
,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案