向面積為S正方形ABCD內(nèi)任意投一點(diǎn)P,則△PAB的面積小于等于
S
4
的概率為
1
2
1
2
分析:根據(jù)題意,設(shè)正方形邊長(zhǎng)為a,p到AB的距離為d,E、F為AD、BC的中點(diǎn);由△PAB的面積小于等于
S
4
,可得
1
2
•a•d<
S
4
,進(jìn)而可得d<
a
2
,分析可得符合條件的P在矩形ABEF內(nèi),易得矩形ABEF的面積,由幾何概型公式計(jì)算可得答案.
解答:解:如圖,設(shè)正方形邊長(zhǎng)為a,p到AB的距離為d,E、F為AD、BC的中點(diǎn);
正方形邊長(zhǎng)為a,則S=a2,
若△PAB的面積小于等于
S
4
,即
1
2
•a•d<
S
4
,解可得d<
a
2

則P到AB的距離小于
a
2
,即符合條件的P在矩形ABEF內(nèi),易得矩形ABEF的面積為
1
2
×a×a=
1
2
S,
則△PAB的面積小于等于
S
4
的概率為
s
2
s
=
1
2
;
故答案為
1
2
點(diǎn)評(píng):本題考查幾何概型的運(yùn)用,解題的關(guān)鍵在于分析得到P具有的性質(zhì),進(jìn)而得到P所在的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:河北省期中題 題型:填空題

在ΔABC中,∠A=90°,AB=AC=2,一邊長(zhǎng)為2的正方形BDEF沿BC邊向右平行移,若移動(dòng)過程中正方形和三角形的公共部分面積為S,則S的的最大值為(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案