過點F(1,0)且與直線l:x=-1相切的動圓圓心的軌跡方程是______.
設(shè)動圓的圓心為M(x,y)
∵圓M過點F(1,0)且與直線l:x=-1相切
∴點M到F的距離等于點M到直線l的距離.
由拋物線的定義,得M的軌跡是以F為焦點,直線l為準(zhǔn)線的拋物線
設(shè)方程為y2=2px(p>0),則
p
2
=1,2p=4
∴M的軌跡方程是y2=4x
故答案為:y2=4x
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(1,0),F(xiàn)′(-1,0),動點P滿足|
PF
|,
2
2
|
FF′
|,|PF′|成等差數(shù)列
(1)求動點P的軌跡E的方程
(2)過點F(1,0)且與x軸不重合的直線l與E交于M、N兩點,以MN為對角線的正方形的第三個頂點恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點F(1,0)且與直線l:x=-1相切的動圓圓心的軌跡方程是
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•梅州一模)過點F(1,0)且與直線x=-1相切的動圓圓心P的軌跡方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點F(1,0),F(xiàn)′(-1,0),動點P滿足|
PF
|,
2
2
|
FF′
|,|PF′|成等差數(shù)列
(1)求動點P的軌跡E的方程
(2)過點F(1,0)且與x軸不重合的直線l與E交于M、N兩點,以MN為對角線的正方形的第三個頂點恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省洛陽市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定點F(1,0),F(xiàn)′(-1,0),動點P滿足||,||,|PF′|成等差數(shù)列
(1)求動點P的軌跡E的方程
(2)過點F(1,0)且與x軸不重合的直線l與E交于M、N兩點,以MN為對角線的正方形的第三個頂點恰在y軸上,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案