【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;并估計(jì),以運(yùn)動(dòng)為主的休閑方式的人的比例;

2)能否在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?

附表:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2.

【答案】1)列聯(lián)表見解析,1531;(2)能

【解析】

1)由題設(shè)所給的數(shù)據(jù)可得列聯(lián)表,然后求出以運(yùn)動(dòng)為主的休閑方式的人的比例;

2)先假設(shè)休閑與性別無關(guān),求K2,再結(jié)合題意即可得解.

解:(1)由所給的數(shù)據(jù)得到列聯(lián)表:

休閑方式

性別

看電視

運(yùn)動(dòng)

合計(jì)

43

27

70

21

33

54

合計(jì)

64

60

124

∴以運(yùn)動(dòng)為主要的休閑方式的比例為,即1531;

2)假設(shè)休閑與性別無關(guān),

6.2015.024,

所以在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為休閑方式與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002年8月在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,設(shè)直角三角形中較小的銳角為,大正方形的面積是1,小正方形的面積是.若,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線(其中)的焦點(diǎn)的直線交拋物線于兩點(diǎn),且兩點(diǎn)的縱坐標(biāo)之積為

(1)求拋物線的方程;

(2)當(dāng)時(shí),求的值;

(3)對(duì)于軸上給定的點(diǎn)(其中),若過點(diǎn)兩點(diǎn)的直線交拋物線的準(zhǔn)線點(diǎn),求證:直線軸交于一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PDDC,點(diǎn)EPC的中點(diǎn),作EFPBPB于點(diǎn)F.

1)求證:PA∥平面BDE;

2)求證:PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的營銷部門對(duì)某件商品在網(wǎng)上銷售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過統(tǒng)計(jì)得到以下表:

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;

2)該公司為了在購物節(jié)期間對(duì)所有商品價(jià)格進(jìn)行新一輪調(diào)整,隨機(jī)抽查了上一年購物節(jié)期間60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表:

網(wǎng)購金額

(單位:千元)

合計(jì)

頻數(shù)

3

9

9

15

18

6

60

若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客定義為“非網(wǎng)購達(dá)人”.該營銷部門為了進(jìn)步了解這60名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機(jī)選取3人進(jìn)行問卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①,;②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點(diǎn),為坐標(biāo)原點(diǎn),關(guān)于的對(duì)稱點(diǎn)為,,圓.

1)求橢圓和圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)與圓相切于點(diǎn),使得點(diǎn),點(diǎn)的兩側(cè).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,其中.

(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)區(qū)間(不要求證明);

(2)若對(duì)于任意的,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案