已知函數(shù)數(shù)學(xué)公式是R上的奇函數(shù),
(1)求m的值;
(2)先判斷f(x)的單調(diào)性,再證明之.

解:(1)因?yàn)楹瘮?shù)是R上的奇函數(shù),故有f(0)=0,即m-=0,
解得m=1.
(2)f(x)在R上單調(diào)遞增,以下證明之:
任取x1,x2∈R,且x1<x2,則

∴f(x2)-f(x1)>0,所以f(x2)>f(x1),
故f(x)在R上單調(diào)遞增.
分析:(1)特值法:利用R上的奇函數(shù)滿足f(0)=0,即可求得m值.
(2)利用函數(shù)單調(diào)性的定義.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、單調(diào)性,準(zhǔn)確理解相關(guān)定義是解決本題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結(jié)論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若;

(3)若方程在[-8,8]內(nèi)恰有四個(gè)不同的根,則

其中正確的有(     )

A.0個(gè)              B.1個(gè)             C.2個(gè)               D.3個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案