【題目】某食品的保鮮時(shí)間t(單位:小時(shí))與儲(chǔ)藏溫度x(單位:)滿足函數(shù)關(guān)系且該食品在4的保鮮時(shí)間是16小時(shí).

已知甲在某日上午10時(shí)購(gòu)買了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)間變化如圖所示.給出以下四個(gè)結(jié)論:

該食品在6的保鮮時(shí)間是8小時(shí);

當(dāng)x[6,6]時(shí),該食品的保鮮時(shí)間t隨著x增大而逐漸減少;

到了此日13時(shí),甲所購(gòu)買的食品還在保鮮時(shí)間內(nèi);

到了此日14時(shí),甲所購(gòu)買的食品已然過(guò)了保鮮時(shí)間.

其中,所有正確結(jié)論的序號(hào)是

【答案】①④

【解析】

試題分析:食品的保鮮時(shí)間t(單位:小時(shí))與儲(chǔ)藏溫度x(單位:)滿足函數(shù)關(guān)系且該食品在4的保鮮時(shí)間是16小時(shí).

24k+6=16,即4k+6=4,解得:k=,

,

當(dāng)x=6時(shí),t=8,故該食品在6的保鮮時(shí)間是8小時(shí),正確;

當(dāng)x[60]時(shí),保鮮時(shí)間恒為64小時(shí),當(dāng)x0,6]時(shí),該食品的保鮮時(shí)間t隨看x增大而逐漸減少,故錯(cuò)誤;

到了此日10時(shí),溫度超過(guò)8度,此時(shí)保鮮時(shí)間不超過(guò)4小時(shí),故到13時(shí),甲所購(gòu)買的食品不在保鮮時(shí)間內(nèi),故錯(cuò)誤;

到了此日14時(shí),甲所購(gòu)買的食品已然過(guò)了保鮮時(shí)間,故正確,

故正確的結(jié)論的序號(hào)為:①④,

故答案為:①④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,四邊形中,的中點(diǎn), 將(圖甲)沿直線折起,使二面角(如圖乙).

(1)求證:⊥平面

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知全集U={2,4,a2a+1},A={a+4,4},UA={7},則a________.

(2)當(dāng)a>0a≠1時(shí),函數(shù)必過(guò)定點(diǎn)_______

(3)為了保證信息安全,傳輸必須使用加密方式,有一種方式其加密、解密原理如下:

明文密文密文明文

己知加密為yax-2(x為明文、y為密文),如果明文“3”通過(guò)加密后得到密文為“6”,再發(fā)送,接收方通過(guò)解密得到明文“3”,若接收方接到密文為“14”,則原發(fā)的明文是________

(4)已知3a=5b=M,且,則M的值為______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),點(diǎn)P為拋物線上一點(diǎn),則|PA|+|PF|的最小值為(   )

A. 16 B. 6 C. 12 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系x0y中,動(dòng)點(diǎn)A的坐標(biāo)為(2﹣3sinα,3cosα﹣2),其中α∈R.在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線C的方程為ρcos(θ﹣ )=a.
(1)判斷動(dòng)點(diǎn)A的軌跡的形狀;
(2)若直線C與動(dòng)點(diǎn)A的軌跡有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=是定義在[-l,1]上的奇函數(shù),且f()=

(1)確定函數(shù)f(x)的解析式;

(2)判斷并用定義證明f(x)(-1,1)上的單調(diào)性;

(3)f(1-3m)+f(1+m)≥0,求實(shí)數(shù)m的所有可能的取值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,+∞)時(shí),f(x)≥ 恒成立,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)n∈N* , n≥2時(shí),求證:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和最小值;

(2)若函數(shù)上的最小值為,求的值;

(3)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案