已知不等式組
4x-3y+m≤0
x>0
y<0
,
(1)若該不等式組表示的平面區(qū)域內的整點有且僅有一個,且在直線4x-3y+m=0上,則實數(shù)m=
-7
-7
;
(2)若該不等式組表示的平面區(qū)域內的整點有且僅有三個,則實數(shù)m的取值范圍是
(-13,-11]
(-13,-11]
分析:(1)作出不等式組表示的平面區(qū)域,得到如圖的△AB0內部,不等式組表示的平面區(qū)域內的整點有且僅有一個,必定是(-1,1),因此(-1,1)在直線4x-3y+m=0上,可解出m=7;
(2)記直線l:4x-3y+m=0,隨著l向上平移,可見區(qū)域內依此出現(xiàn)點(-1,1)、(-1,2)、(-2,1)、(-1,3),由此建立關于m的不等式組,解之即可得到實數(shù)m的范圍.
解答:解:作出不等式組
4x-3y+m≤0
x>0
y<0
表示的平面區(qū)域,
得到如圖的△AB0內部,其中A(-
m
4
,0),B(0,
m
3
),0為坐標原點
(1)∵不等式組表示的平面區(qū)域內的整點有且僅有一個,
∴必定有(-1,1)在區(qū)域內,故點(-1,1)在直線4x-3y+m=0上,
即4×(-1)-3×1+m=0,解之得m=7;
(2)結合直線的斜率k=
4
3
,平移直線l:4x-3y+m=0
隨著直線l的向上平移,區(qū)域內依此出現(xiàn)點
(-1,1)、(-1,2)、(-2,1)、(-1,3)
∴若該不等式組表示的平面區(qū)域內的整點有且僅有三個,必定是(-1,1)、(-1,2)、(-2,1)
記F(x,y)=4x-3y+m=0,則
F(-2,1)≤0
F(-1,3)>0

-8-3+m≤0
-4-9+m>0
,解之得-13<m≤-11
故答案為:7,-13<m≤-11
點評:本題給出含有字母參數(shù)的不等式組,在已知區(qū)域內整點個數(shù)的情況下求參數(shù)的值或范圍.著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-9x+a<0的解集的子集,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-bx+a<0的解集,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M在曲線x2+y2+4x+3=0上,點N在不等式組
x-2≤0
3x+4y≥4
y-3≤0
所表示的平面區(qū)域內,那么|MN|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-9x+a<0的解集的子集,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是不等式2x2-bx+a<0的解集,則實數(shù)a的值是______.

查看答案和解析>>

同步練習冊答案