2002年8月,在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是,則sin2θ-cos2θ的值等于   
【答案】分析:根據(jù)題意可知每個(gè)直角三角形的長(zhǎng)直角邊為cosθ,短直角邊為sinθ,小正方形的邊長(zhǎng)為cosθ-sinθ,先利用小正方形的面積求得∴(cosθ-sinθ)2的值,根據(jù)θ為直角三角形中較小的銳角,判斷出cosθ>sinθ  求得cosθ-sinθ的值,進(jìn)而求得2cosθsinθ利用配方法求得(cosθ+sinθ)2的進(jìn)而求得cosθ+sinθ,利用平方差公式把sin2θ-cos2θ展開后,把cosθ+sinθ和cosθ-sinθ的值代入即可求得答案.
解答:解:依題意可知拼圖中的每個(gè)直角三角形的長(zhǎng)直角邊為cosθ,短直角邊為sinθ,小正方形的邊長(zhǎng)為cosθ-sinθ,
∵小正方形的面積是
∴(cosθ-sinθ)2=
又θ為直角三角形中較小的銳角,
∴cosθ>sinθ       
∴cosθ-sinθ=      
又∵(cosθ-sinθ)2=1-2sinθcosθ=
∴2cosθsinθ=
∴1+2sinθcosθ=
即(cosθ+sinθ)2=
∴cosθ+sinθ=  
∴sin2θ-cos2θ=(cosθ+sinθ)(sinθ-cosθ)=-
故答案為-
點(diǎn)評(píng):本題主要考查了三角函數(shù)的化簡(jiǎn)求值,同角三角函數(shù)的基本關(guān)系.考查了學(xué)生綜合分析推理和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)2002年8月,在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是
125
,則sin2θ-cos2θ的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2002年8月,在北京召開國(guó)際數(shù)學(xué)家大會(huì),大會(huì)會(huì)標(biāo)如圖所示,它是由四個(gè)相同的直角三角形、與中間的小正方形拼成的大正方形.若直角三角形中較小的銳角為θ,大正方形的面積為1,小正方形的面積為
1
25
,則sinθ+cosθ=
7
5
7
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2002年8月,在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小
正方形拼成的一大正方形.已知大正方形的面積是1,小正方形的面積是
125
.記直角三角形中的一個(gè)銳角為θ.
(1)請(qǐng)根據(jù)本題題意寫出sinθ與cosθ之間的等量關(guān)系,并求tanθ的值;
(2)解關(guān)于x的不等式logtanθ(x2-1)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)2002年8月,在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較大的銳角為θ,大正方形的面積是1,小正方形的面積是
125
,求角θ的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年陜西省西安市高一下學(xué)期第二次月考數(shù)學(xué) 題型:選擇題

2002年8月,在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為,大正方形的面積是1,小正方形的面積是的值等于(    )

A.1                B.         C.          D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案