已知o為平面直角坐標系的原點,F(xiàn)2為雙曲線數(shù)學公式的右焦點,若該雙曲線的右支上存在一點使得|PO|=|PF2|,則該雙曲線離心率的范圍是________.

[2,+∞)
分析:設P點的橫坐標為x,過點P作x軸的垂線,根據(jù)|PO|=|PF2|,得出垂足H是OF2的中點,再結合P在雙曲線右支確定x的范圍,進而根據(jù)x的范圍確定e的范圍.
解答:解:設P點的橫坐標為x
過點P作x軸的垂線,根據(jù)|PO|=|PF2|,得出垂足H是OF2的中點,
所以x=
∵P在雙曲線右支
∴x≥a,
得到≥a,?
∴e的范圍為[2,+∞),
故答案為:[2,+∞).
點評:本題主要考查了雙曲線的簡單性質.考查了雙曲線中平面幾何性質的靈活運用.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
),若直線l過點P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關于t的參數(shù)方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內.
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對應的一個特征向量α1=
1
1
,特征值λ2=-1及其對應的一個特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標系與參數(shù)方程)
以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系(兩種坐標系中取相同的單位長度),已知點A的直角坐標為(-2,6),點B的極坐標為(4,
π
2
)
,直線l過點A且傾斜角為
π
4
,圓C以點B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標方程.
D.(選修4-5:不等式選講)
設a,b,c,d都是正數(shù),且x=
a2+b2
y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是直角坐標平面xOy上的一個動點,|OP|=
2
(點O為坐標原點),點M(-1,0),則cos∠OPM的取值范圍是
[
2
2
,1]
[
2
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州二模)已知點P是直角坐標平面xOy上的一個動點,|OP|=
2
(點O為坐標原點),點M(-1,0),則cos∠MOP的取值范圍是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市海門中學高三(上)開學檢測數(shù)學試卷(解析版) 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓+=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,),若直線l過點P,且傾斜角為 ,圓C以M為圓心、4為半徑.
(1)求直線l關于t的參數(shù)方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

同步練習冊答案