選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
(1)求曲線C的普通方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線L的距離的最小值.
(1)(2)
解析試題分析:(1)平方相加可以消去參數(shù)得到曲線C的普通方程為:.
(2)因?yàn)辄c(diǎn)Q在曲線C上,故可設(shè)點(diǎn)Q的坐標(biāo)為,
從而點(diǎn)Q到直線的距離為
,
由此得,當(dāng)時,d取得最小值,且最小值為
考點(diǎn):本小題主要考查參數(shù)方程與普通方程的互化,參數(shù)方程的應(yīng)用.
點(diǎn)評:本題考查橢圓的參數(shù)方程和點(diǎn)到直線距離公式的應(yīng)用,解題時要認(rèn)真審題,注意參數(shù)方程與普通方程的互化,注意三角函數(shù)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)(,).
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該橢圓交于、兩點(diǎn),滿足直線,,的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動點(diǎn).
(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點(diǎn)作拋物線的兩條切線,、分別為兩個切點(diǎn),設(shè)點(diǎn)到直線的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn),過的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)為軸上的動點(diǎn),點(diǎn)為軸上的動點(diǎn),點(diǎn)為定點(diǎn),且滿足,.
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)且斜率為的直線與曲線交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在坐標(biāo)原點(diǎn)O,長軸長為2,離心率e=,過右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com