已知函數(shù)f(x)=x3-3ax+b(a、b∈R)在x=2處的切線方程為y=9x-14.
(I)求f(x)的單調(diào)區(qū)間;
(II)令g(x)=-x2+2x+k,若對任意x1∈[0,2],均存在x2∈[0,2],使得f(x1)<g(x2)求實數(shù)k的取值范圍.
【答案】分析:(Ⅰ)求導函數(shù),利用f(x)在x=2處的切線方程為y=9x-14,求出函數(shù)的解析式,利用導數(shù)的正負可得函數(shù)的單調(diào)區(qū)間;
(Ⅱ)對任意x1∈[0,2],均存在x2∈[0,2]l,使得f(x1)<g(x2)成立,有f(x)max<g(x)max,求出相應函數(shù)的最值,即可求得實數(shù)k的取值范圍.
解答:解:(Ⅰ)求導函數(shù)可得f′(x)=3x2-3a,
∵f(x)在x=2處的切線方程為y=9x-14,
,∴,∴,∴f(x)=x3-3x+2
∴f′(x)=3(x+1)(x-1),
由f′(x)>0,得x<-1或x>1;由f′(x)<0,得-1<x<1.
故函數(shù)f(x)單調(diào)遞減區(qū)間是(-1,1);單調(diào)遞增區(qū)間是(-∞,-1),(1,+∞).
(Ⅱ)由(Ⅰ)知,函數(shù)f(x)在(0,1)單調(diào)遞減,在(1,2)上單調(diào)遞增,
又f(0)=2,f(2)=4,有f(0)<f(2),
∴函數(shù)f(x)在區(qū)間[0,2]上的最大值f(x)max=f(2)=4.
又g(x)=-x2+2x+k=-( x-1)2+k+1
∴函數(shù)g(x)在[0,2]上的最大值為g(x)max=g(1)=k+1
因為對任意x1∈[0,2],均存在x2∈[0,2]l,使得f(x1)<g(x2)成立,
所以有f(x)max<g(x)max,則4<k+1,∴k>3.
故實數(shù)k的取值范圍是(3,+∞).
點評:本題考查導數(shù)知識的運用,考查導數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,解題的關(guān)鍵是將問題轉(zhuǎn)化為f(x)max<g(x)max,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案