(2012•開(kāi)封一模)在等差數(shù)列{an}中,已知a6=5,Sn是數(shù)列{an}的前n項(xiàng)和,則S11=( 。
分析:由等差數(shù)列的定義和性質(zhì)可得S11=
11×(a1+a11)
2
=11a6 ,把已知條件代入運(yùn)算求得結(jié)果.
解答:解:∵等差數(shù)列{an}中,已知a6=5,Sn是數(shù)列{an}的前n項(xiàng)和,則S11=
11×(a1+a11)
2
=11a6=55,
故選C.
點(diǎn)評(píng):本題主要考查等差數(shù)列的定義和性質(zhì),前n項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)封一模)在平面直角坐標(biāo)系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的
3
、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)封一模)若m、n為兩條不重合的直線,α、β為兩個(gè)不重合的平面,則下列命題中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)封一模)在△ABC中,角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,若b2+c2-a2=
6
5
bc,則cosA的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)封一模)已知點(diǎn)P(x,y)在不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域內(nèi),則z=2x+y的最大值為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案