在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”.類似的,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“>”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個命題:
①1>i>0;
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號為


  1. A.
    ①②④
  2. B.
    ①②③
  3. C.
    ①③④
  4. D.
    ②③④
B
分析:根據(jù)z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”,判斷各個選項中的結(jié)論是否滿足此定義,從而得出結(jié)論.
解答:①∵z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.由于1=1+0i,i=0+1×i,0=0+0×i,故①1>i>0正確.
②由定義可得,復(fù)數(shù)的大小具有傳遞性,故z1>z2,z2>z3,則z1>z3 ,②正確.
③正確,設(shè)z=c+di,由z1>z2時“a1>a2”或“a1=a2且b1>b2”,可得“c+a1>c+a2”或“c+a1=c+a2且d+b1>d+b2
即z+z1>z2+z成立
④不正確,如當(dāng) z1 =3i,z2=2i,z=2i時,zz1=-6,zz2 =-4,顯然不滿足zz1>zz2
其中真命題的序號為①②③.
故選B.
點(diǎn)評:本題主要考查復(fù)數(shù)的基本概念,z1>z2 的定義,通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”.類似的,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“>”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”.類似的,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“>”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個命題:
①1>i>0;
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中所有真命題的個數(shù)為( 。荆荆

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)在實數(shù)集R中,我們定義的大小關(guān)系“》”為全體實數(shù)排了一個“序”.類似的,我們在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定義一個稱為“序”的關(guān)系,記為“》”.定義如下:
對于任意兩個向量
a1
=(x1,y1),
a2
=(x2,y2),
a1
a2
當(dāng)且僅當(dāng)“x1>x2”或“x1=x2且y1>y2”.按上述定義的關(guān)系“》”,給出如下四個命題:
①若
e1
=(1,0)
e2
=(0,1)
0
=(0,0)
,則
e1
e2
0
;
②若
a1
a2
,
a2
a3
,則
a1
a3

③若
a1
a2
,則對于任意
a
∈D
,
a1
+
a
a2
+
a
;
④對于任意向量
a
0
0
=(0,0)
,若
a1
a2
,則
a
a1
a
a2

其中真命題的序號為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”,類似地,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“?”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數(shù)單位),“z1?z2”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
下面命題:
①1?i?0;
②若z1?z2,z2?z3,則z1?z3
③若z1?z2,則對于任意z∈C,z1+z?z2+z;
④對于復(fù)數(shù)z?0,若z1?z2,則z•z1?z•z2
其中為假命題的是(填入滿足題意的所有序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”,類似地,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“?”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i為虛數(shù)單位),“z1?z2”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
下面命題:
①1?i?0;
②若z1?z2,z2?z3,則z1?z3
③若z1?z2,則對于任意z∈C,z1+z?z2+z;
④對于復(fù)數(shù)z?0,若z1?z2,則z•z1?z•z2
其中真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案